Biquadratic finite volume element methods based on optimal stress points for parabolic problems

被引:11
|
作者
Yu, Changhua [2 ]
Li, Yonghai [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic problems; Finite volume element method; Biquadratic bases; Semi-discrete; Full discrete; Optimal stress points; ELLIPTIC PROBLEMS; EQUATIONS; COVOLUME;
D O I
10.1016/j.cam.2011.07.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the semi-discrete and full discrete biquadratic finite volume element schemes based on optimal stress points for a class of parabolic problems are presented. Optimal order error estimates in H(1) and L(2) norms are derived. In addition, the superconvergences of numerical gradients at optimal stress points are also discussed. A numerical experiment confirms some results of theoretical analysis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1055 / 1068
页数:14
相关论文
共 50 条