IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases

被引:84
|
作者
Rotman, DA [1 ]
Atherton, CS [1 ]
Bergmann, DJ [1 ]
Cameron-Smith, PJ [1 ]
Chuang, CC [1 ]
Connell, PS [1 ]
Dignon, JE [1 ]
Franz, A [1 ]
Grant, KE [1 ]
Kinnison, DE [1 ]
Molenkamp, CR [1 ]
Proctor, DD [1 ]
Tannahill, JR [1 ]
机构
[1] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA 94550 USA
关键词
ozone; stratosphere; troposphere;
D O I
10.1029/2002JD003155
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] We present a global chemical transport model called the Integrated Massively Parallel Atmospheric Chemical Transport ( IMPACT) model. This model treats chemical and physical processes in the troposphere, the stratosphere, and the climatically critical tropopause region, allowing for physically based simulations of past, present, and future ozone and its precursors. The model is driven by meteorological fields from general circulation models ( GCMs) or assimilated fields representing particular time periods. It includes anthropogenic and natural emissions, advective and convective transport, vertical diffusion, dry deposition, wet scavenging, and photochemistry. Simulations presented here use meteorological fields from the National Center for Atmospheric Research (NCAR) Middle Atmospheric Community Climate Model, Version 3 ( MACCM3). IMPACT simulations of radon/lead are compared to observed vertical profiles and seasonal cycles. IMPACT results for a full chemistry simulation, with approximately 100 chemical species and 300 reactions representative of a mid-1990s atmosphere, are presented. The results are compared with surface, satellite, and ozonesonde observations. The model calculates a total annual flux from the stratosphere of 663 Tg O-3/ year, and a net in situ tropospheric photochemical source ( that is, production minus loss) of 161 Tg O-3/year, with 826 Tg O-3/year dry deposited. NOx is overpredicted in the lower midlatitude stratosphere, perhaps because model aerosol surface densities are lower than actual values or the NOx to NOy conversion rate is underpredicted. Analysis of the free radical budget shows that ozone and NOy abundances are simulated satisfactorily, as are HOx catalytic cycles and total production and removal rates for ozone.
引用
下载
收藏
页数:42
相关论文
共 15 条
  • [1] A global three-dimensional chemical transport model for the troposphere .1. Model description and CO and ozone results
    Berntsen, TK
    Isaksen, ISA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D17) : 21239 - 21280
  • [2] Constraining the budget of atmospheric carbonyl sulfide using a 3-D chemical transport model
    Cartwright, Michael P.
    Pope, Richard J.
    Harrison, Jeremy J.
    Chipperfield, Martyn P.
    Wilson, Chris
    Feng, Wuhu
    Moore, David P.
    Suntharalingam, Parvadha
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (17) : 10035 - 10056
  • [3] Investigating the Impacts of Nonacyl Peroxy Nitrates on the Global Composition of the Troposphere Using a 3-D Chemical Transport Model, STOCHEM-CRI
    Khan, M. Anwar H.
    Miles, Barnaby
    Jenkin, Michael E.
    Derwent, Richard G.
    Percival, Carl J.
    Shallcross, Dudley E.
    ACS EARTH AND SPACE CHEMISTRY, 2020, 4 (07): : 1201 - 1212
  • [4] Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model
    Fountoukis, C.
    Koraj, Dh
    van der Gon, H. A. C. Denier
    Charalampidis, P. E.
    Pilinis, C.
    Pandis, S. N.
    ATMOSPHERIC ENVIRONMENT, 2013, 68 : 24 - 32
  • [5] Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
    Dhomse, S.
    Chipperfield, M. P.
    Feng, W.
    Haigh, J. D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) : 12773 - 12786
  • [6] GLOBAL IMPACT OF THE ANTARCTIC OZONE HOLE - DYNAMIC DILUTION WITH A 3-DIMENSIONAL CHEMICAL-TRANSPORT MODEL
    PRATHER, M
    GARCIA, MM
    SUOZZO, R
    RIND, D
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D4) : 3449 - 3471
  • [7] Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model
    Xiao, X.
    Prinn, R. G.
    Fraser, P. J.
    Simmonds, P. G.
    Weiss, R. F.
    O'Doherty, S.
    Miller, B. R.
    Salameh, P. K.
    Harth, C. M.
    Krummel, P. B.
    Porter, L. W.
    Muehle, J.
    Greally, B. R.
    Cunnold, D.
    Wang, R.
    Montzka, S. A.
    Elkins, J. W.
    Dutton, G. S.
    Thompson, T. M.
    Butler, J. H.
    Hall, B. D.
    Reimann, S.
    Vollmer, M. K.
    Stordal, F.
    Lunder, C.
    Maione, M.
    Arduini, J.
    Yokouchi, Y.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) : 5515 - 5533
  • [8] Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources
    Friedman, Carey L.
    Selin, Noelle E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (17) : 9501 - 9510
  • [9] Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model
    Mann, G. W.
    Carslaw, K. S.
    Ridley, D. A.
    Spracklen, D. V.
    Pringle, K. J.
    Merikanto, J.
    Korhonen, H.
    Schwarz, J. P.
    Lee, L. A.
    Manktelow, P. T.
    Woodhouse, M. T.
    Schmidt, A.
    Breider, T. J.
    Emmerson, K. M.
    Reddington, C. L.
    Chipperfield, M. P.
    Pickering, S. J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (10) : 4449 - 4476
  • [10] Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake
    Suntharalingam, Parvadha
    Kettle, A. J.
    Montzka, S. M.
    Jacob, D. J.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)