共 50 条
Perceived Direction of Motion Determined by Adaptation to Static Binocular Images
被引:51
|作者:
May, Keith A.
[1
]
Zhaoping, Li
[1
]
Hibbard, Paul B.
[2
]
机构:
[1] UCL, UCL Dept Comp Sci, London WC1E 6BT, England
[2] Univ St Andrews, Sch Psychol, St Andrews KY16 9JP, Fife, Scotland
基金:
英国工程与自然科学研究理事会;
关键词:
3-SYSTEMS THEORY;
STIMULUS SIZE;
PERCEPTION;
MECHANISMS;
SIGNALS;
VISION;
SYSTEM;
D O I:
10.1016/j.cub.2011.11.025
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
In Li and Atick's [1, 2] theory of efficient stereo coding, the two eyes' signals are transformed into uncorrelated binocular summation and difference signals, and gain control is applied to the summation and differencing channels to optimize their sensitivities. In natural vision, the optimal channel sensitivities vary from moment to moment, depending on the strengths of the summation and difference signals; these channels should therefore be separately adaptable, whereby a channel's sensitivity is reduced following overexposure to adaptation stimuli that selectively stimulate that channel. This predicts a remarkable effect of binocular adaptation on perceived direction of a dichoptic motion stimulus [3]. For this stimulus, the summation and difference signals move in opposite directions, so perceived motion direction (upward or downward) should depend on which of the two binocular channels is most strongly adapted, even if the adaptation stimuli are completely static. We confirmed this prediction: a single static dichoptic adaptation stimulus presented for less than 1 s can control perceived direction of a subsequently presented dichoptic motion stimulus. This is not predicted by any current model of motion perception and suggests that the visual cortex quickly adapts to the prevailing binocular image statistics to maximize information-coding efficiency.
引用
收藏
页码:28 / 32
页数:5
相关论文