ON UNIQUELY HAMILTONIAN CLAW-FREE AND TRIANGLE-FREE GRAPHS

被引:3
|
作者
Seamone, Ben [1 ]
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hamiltonian cycle; uniquely Hamiltonian graphs; claw-free graphs; triangle-free graphs; INDEPENDENT DOMINATING SETS; CYCLES;
D O I
10.7151/dmgt.1784
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. In this note, we prove that claw-free graphs with minimum degree at least 3 are not uniquely Hamiltonian. We also show that this is best possible by exhibiting uniquely Hamiltonian claw-free graphs with minimum degree 2 and arbitrary maximum degree. Finally, we show that a construction due to Entringer and Swart can be modified to construct triangle-free uniquely Hamiltonian graphs with minimum degree 3.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [1] ON HAMILTONIAN CLAW-FREE GRAPHS
    FLANDRIN, E
    FOUQUET, JL
    LI, H
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 221 - 229
  • [2] Hamiltonian Connected Claw-Free Graphs
    MingChu Li
    Graphs and Combinatorics, 2004, 20 : 341 - 362
  • [3] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H
    Veldman, HJ
    Verschut, A
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 781 - 789
  • [4] Hamiltonian Connectedness in Claw-Free Graphs
    Chen, Xiaodong
    Li, Mingchu
    Ma, Xin
    Fan, Xinxin
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1259 - 1267
  • [5] Hamiltonian connectedness in claw-free graphs
    Li, MC
    GRAPHS AND COMBINATORICS, 1998, 14 (01) : 45 - 58
  • [6] Hamiltonian connected claw-free graphs
    Li, M
    GRAPHS AND COMBINATORICS, 2004, 20 (03) : 341 - 362
  • [7] Hamiltonian Connectedness in Claw-Free Graphs
    MingChu Li
    Graphs and Combinatorics, 1998, 14 (1) : 45 - 58
  • [8] Hamiltonian Connectedness in Claw-Free Graphs
    Xiaodong Chen
    Mingchu Li
    Xin Ma
    Xinxin Fan
    Graphs and Combinatorics, 2013, 29 : 1259 - 1267
  • [9] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H.
    Veldman, H.J.
    Verschut, A.
    Discrete Mathematics, 1999, 197-198 : 781 - 789
  • [10] Hamiltonian Type Properties in Claw-Free -Free Graphs
    Crane, Charles B.
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1817 - 1828