Heterogeneous Image Feature Integration via Multi-Modal Spectral Clustering

被引:0
|
作者
Cai, Xiao [1 ]
Nie, Feiping [1 ]
Huang, Heng [1 ]
Kamangar, Farhad [1 ]
机构
[1] Univ Texas Arlington, Comp Sci & Engn Dept, Arlington, TX 76019 USA
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, more and more visual descriptors have been proposed to describe objects and scenes appearing in images. Different features describe different aspects of the visual characteristics. How to combine these heterogeneous features has become an increasing critical problem. In this paper, we propose a novel approach to unsupervised integrate such heterogeneous features by performing multi-modal spectral clustering on unlabeled images and unsegmented images. Considering each type of feature as one modal, our new multi-modal spectral clustering (MMSC) algorithm is to learn a commonly shared graph Laplacian matrix by unifying different modals (image features). A non-negative relaxation is also added in our method to improve the robustness and efficiency of image clustering. We applied our MMSC method to integrate five types of popularly used image features, including SIFT, HOG, GIST, LBP, CENTRIST and evaluated the performance by two benchmark data sets: Caltech-101 and MSRC-v1. Compared with existing unsupervised scene and object categorization methods, our approach always achieves superior performances measured by three standard clustering evaluation metrices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Heterogeneous Image Features Integration via Multi-Modal Semi-Supervised Learning Model
    Cai, Xiao
    Nie, Feiping
    Cai, Weidong
    Huang, Heng
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1737 - 1744
  • [2] Multi-modal Feature Integration for Secure Authentication
    Kang, Hang-Bong
    Ju, Myung-Ho
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1191 - 1200
  • [3] Multi-modal feature fusion for geographic image annotation
    Li, Ke
    Zou, Changqing
    Bu, Shuhui
    Liang, Yun
    Zhang, Jian
    Gong, Minglun
    PATTERN RECOGNITION, 2018, 73 : 1 - 14
  • [4] Heterogeneous Features Integration via Semi-supervised Multi-modal Deep Networks
    Zhao, Lei
    Hu, Qinghua
    Zhou, Yucan
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 11 - 19
  • [5] Heterogeneous Feature Fusion Approach for Multi-Modal Indoor Localization
    Zhou, Junyi
    Huang, Kaixuan
    Tang, Siyu
    Zhang, Shunqing
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [6] Multi-modal Spectral Image Super-Resolution
    Lahoud, Fayez
    Zhou, Ruofan
    Susstrunk, Sabine
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 35 - 50
  • [7] Semi-supervised image clustering with multi-modal information
    Jianqing Liang
    Yahong Han
    Qinghua Hu
    Multimedia Systems, 2016, 22 : 149 - 160
  • [8] Semi-supervised image clustering with multi-modal information
    Liang, Jianqing
    Han, Yahong
    Hu, Qinghua
    MULTIMEDIA SYSTEMS, 2016, 22 (02) : 149 - 160
  • [9] Multiscale structural feature transform for multi-modal image matching
    Hu, Maoqing
    Sun, Bin
    Kang, Xudong
    Li, Shutao
    INFORMATION FUSION, 2023, 95 : 341 - 354
  • [10] Fabric image retrieval based on multi-modal feature fusion
    Ning Zhang
    Yixin Liu
    Zhongjian Li
    Jun Xiang
    Ruru Pan
    Signal, Image and Video Processing, 2024, 18 : 2207 - 2217