The performance of parallel iterative solvers

被引:3
|
作者
Petcu, D [1 ]
机构
[1] Western Univ Timisoara, Dept Comp Sci, Timisoara 1900, Romania
关键词
parallel numerical methods; differential equations; code performance;
D O I
10.1016/j.camwa.2005.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A performance model is constructed for parallel iterative numerical methods under the assumption of a message-passing computing system. Arguments are given for the fact that the speedup of parallel iterative methods is mainly influenced by the speedup at one iterative step. Using the theoretical model, it is proved why explicit iterative methods for ordinary differential equations are inefficient in implementation on distributed memory multiprocessor systems. Numerical tests on parallel and distributed computing environments confirm the correctness of the theoretical model at least in the case of iterative methods for ordinary differential equations and time-dependent partial differential equations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1179 / 1189
页数:11
相关论文
共 50 条
  • [1] Performance prediction for parallel iterative solvers
    Blanco, V
    González, P
    Cabaleiro, JC
    Heras, DB
    Pena, TF
    Pombo, JJ
    Rivera, FF
    JOURNAL OF SUPERCOMPUTING, 2004, 28 (02): : 177 - 191
  • [2] Performance Prediction for Parallel Iterative Solvers
    V. Blanco
    P. González
    J. C. Cabaleiro
    D. B. Heras
    T. F. Pena
    J. J. Pombo
    F. F. Rivera
    The Journal of Supercomputing, 2004, 28 : 177 - 191
  • [3] Performance prediction for parallel iterative solvers
    Blanco, V
    González, P
    Cabaleiro, JC
    Heras, DB
    Pena, TF
    Pombo, JJ
    Rivera, FF
    COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 923 - 932
  • [4] AVISPA:: visualizing the performance prediction of parallel iterative solvers
    Blanco, V
    González, P
    Cabaleiro, JC
    Heras, DB
    Pena, TF
    Pombo, JJ
    Rivera, FF
    FUTURE GENERATION COMPUTER SYSTEMS, 2003, 19 (05) : 721 - 733
  • [5] Parallel variational iterative linear solvers
    Ciegis, Raim
    Ciegis, Rem
    Jakusev, A.
    Salteniene, G.
    MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 1 - 16
  • [6] The convergence variability of parallel iterative solvers
    Smith, IM
    Margetts, L
    ENGINEERING COMPUTATIONS, 2006, 23 (1-2) : 154 - 165
  • [7] Finite difference iterative solvers for electroencephalography: serial and parallel performance analysis
    Barnes, Derek N.
    George, John S.
    Ng, Kwong T.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (09) : 901 - 910
  • [8] Parallel iterative solvers for irregular sparse matrices in High Performance Fortran
    de Sturler, E
    Loher, D
    FUTURE GENERATION COMPUTER SYSTEMS, 1998, 13 (4-5) : 315 - 325
  • [9] Finite difference iterative solvers for electroencephalography: serial and parallel performance analysis
    Derek N. Barnes
    John S. George
    Kwong T. Ng
    Medical & Biological Engineering & Computing, 2008, 46 : 901 - 910
  • [10] Performance of parallel iterative solvers:: a library, a prediction model, and a visualization tool
    Blanco, V
    González, P
    Cabaleiro, JC
    Heras, DB
    Pena, TF
    Pombo, JJ
    Rivera, FF
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2002, 18 (05) : 763 - 785