Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa

被引:56
|
作者
Barnes, Melissa D. [1 ,2 ]
Taracila, Magdalena A. [1 ,2 ]
Rutter, Joseph D. [1 ]
Bethel, Christopher R. [1 ]
Galdadas, Ioannis [9 ]
Hujer, Andrea M. [1 ,2 ]
Caselli, Emilia [7 ]
Prati, Fabio [7 ]
Dekker, John P. [8 ]
Papp-Wallace, Krisztina M. [1 ,2 ,5 ,6 ]
Haider, Shozeb [9 ]
Bonomo, Robert A. [1 ,2 ,3 ,4 ,5 ,6 ,10 ,11 ]
机构
[1] Louis Stokes Cleveland Dept Vet Affairs, Res Serv, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Med, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Dept Mol Biol & Microbiol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Prote & Bioinformat, Cleveland, OH 44106 USA
[7] Univ Modena & Reggio Emilia, Dept Life Sci, Modena, Italy
[8] NIH, Dept Lab Med, Clin Ctr, Microbiol Serv, Bldg 10, Bethesda, MD 20892 USA
[9] UCL, UCL Sch Pharm, London, England
[10] CWRU Cleveland VAMC Ctr Antimicrobial Resistance, Cleveland, OH 44106 USA
[11] Louis Stokes Cleveland Dept Vet Affairs, GRECC, Cleveland, OH 44106 USA
来源
MBIO | 2018年 / 9卷 / 06期
基金
美国国家卫生研究院;
关键词
AmpC; PDC-3; antibiotic resistance; beta-lactam; beta-lactamase; ceftolozane; omega loop; AMPC BETA-LACTAMASE; OMEGA-LOOP; CARBOXYLATE RECOGNITION; MOLECULAR-DYNAMICS; BORONIC ACIDS; INHIBITION; SUBSTRATE; KPC-2; CEFTAZIDIME/AVIBACTAM; AVIBACTAM;
D O I
10.1128/mBio.02085-18
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa produces a class C beta-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these beta-lactamases are resistant to many beta-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3' aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Omega-loop variants of the PDC beta-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coil strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of beta-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that dif- fers in structure largely in the R2 side chain. The k(cat) values of the E221K variant for both substrates were equivalent, whereas the K-m for ceftolozane (341 +/- 64 mu M) was higher than that for ceftazidime (174 +/- 20 mu M). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Omega-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane beta-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221 K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective beta-lactam/beta-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of beta-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down beta-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 beta-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new beta-lactam/beta-lactamase inhibitor combinations.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Ceftolozane/tazobactam resistance in Pseudomonas aeruginosa
    Skoglund, Erik
    Abodakpi, Henrietta
    Diaz, Lorena
    Rios, Rafael
    Tran, Truc T.
    Arias, Cesar A.
    Tam, Vincent H.
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2017, 50 : S39 - S39
  • [2] Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance
    Haidar, Ghady
    Philips, Nathan J.
    Shields, Ryan K.
    Snyder, Daniel
    Cheng, Shaoji
    Potoski, Brian A.
    Doi, Yohei
    Hao, Binghua
    Press, Ellen G.
    Cooper, Vaughn S.
    Clancy, Cornelius J.
    Hong Nguyen, M.
    [J]. CLINICAL INFECTIOUS DISEASES, 2017, 65 (01) : 110 - 120
  • [3] Ceftolozane-tazobactam: A new-generation cephalosporin
    Cluck, David
    Lewis, Paul
    Stayer, Brooke
    Spivey, Justin
    Moorman, Jonathan
    [J]. AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2015, 72 (24) : 2135 - 2146
  • [4] Cefiderocol Activity Against Clinical Pseudomonas aeruginosa Isolates Exhibiting Ceftolozane-Tazobactam Resistance
    Simner, Patricia J.
    Beisken, Stephan
    Bergman, Yehudit
    Posch, Andreas E.
    Cosgrove, Sara E.
    Tamma, Pranita D.
    [J]. OPEN FORUM INFECTIOUS DISEASES, 2021, 8 (07):
  • [5] In Vitro Comparison of Ceftolozane-Tazobactam to Traditional Beta-Lactams and Ceftolozane-Tazobactam as an Alternative to Combination Antimicrobial Therapy for Pseudomonas aeruginosa
    Goodlet, Kellie J.
    Nicolau, David P.
    Nailor, Michael D.
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (12)
  • [6] Ceftolozane-tazobactam resistance induced in vivo during the treatment of MDR Pseudomonas aeruginosa pneumonia.
    Plant, Aiden J.
    Dunn, Alexander
    Porter, Robert J.
    [J]. EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2018, 16 (05) : 367 - 368
  • [7] CEFTOLOZANE-TAZOBACTAM ACTIVITY VERSUS RESISTANT PSEUDOMONAS AERUGINOSA FROM PNEUMONIA IN THE US
    Shortridge, Dee
    Streit, Jennifer
    DeRyke, Andrew
    Flamm, Robert
    [J]. CRITICAL CARE MEDICINE, 2020, 48
  • [8] Clinical outcomes and emergence of resistance of Pseudomonas aeruginosa infections treated with ceftolozane-tazobactam versus ceftazidime-avibactam
    Hareza, Dariusz A.
    Cosgrove, Sara E.
    Bonomo, Robert A.
    Dzintars, Kathryn
    Karaba, Sara M.
    Hawes, Armani M.
    Tekle, Tsigereda
    Simner, Patricia J.
    Tamma, Pranita D.
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2024,
  • [9] Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: A Multicenter Study
    Gallagher, Jason C.
    Satlin, Michael J.
    Elabor, Abdulrahman
    Saraiya, Nidhi
    McCreary, Erin K.
    Molnar, Esther
    El-Beyrouty, Claudine
    Jones, Bruce M.
    Dixit, Deepali
    Heil, Emily L.
    Claeys, Kimberly C.
    Hiles, Jon
    Vyas, Nikunj M.
    Bland, Christopher M.
    Suh, Jin
    Biason, Kenneth
    McCoy, Dorothy
    King, Madeline A.
    Richards, Lynette
    Harrington, Nicole
    Guo, Yi
    Chaudhry, Saira
    Lu, Xiaoning
    Yu, Daohai
    [J]. OPEN FORUM INFECTIOUS DISEASES, 2018, 5 (11):
  • [10] Dissemination of carbapenem-resistant Pseudomonas aeruginosa isolates and their susceptibilities to ceftolozane-tazobactam in Germany
    Kresken, Michael
    Koerber-Irrgang, Barbara
    Korte-Berwanger, Miriam
    Pfennigwerth, Niels
    Gatermann, Soeren G.
    Seifert, Harald
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 55 (06)