k-Jet field approximations to geodesic deviation equations

被引:0
|
作者
Torrome, Ricardo Gallego [1 ]
Gratus, Jonathan [2 ,3 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP, Brazil
[2] Univ Lancaster, Phys Dept, Lancaster LA1 4YB, England
[3] Cockcroft Inst, Warrington, Cheshire, England
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
Geodesic deviation equations; generalized Jacobi equation; Finsler spacetimes; Berwald spacetimes; CHARGED TEST PARTICLES; RELATIVE MOTION; GENERAL-RELATIVITY; KINEMATICS;
D O I
10.1142/S0219887818501992
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a smooth manifold and S a semi-spray defined on a sub-bundle C of the tangent bundle TM. In this work, it is proved that the only non-trivial k-jet approximation to the exact geodesic deviation equation of S, linear on the deviation functions and invariant under an specific class of local coordinate transformations, is the Jacobi equation. However, if the linearity property on the dependence in the deviation functions is not imposed, then there are differential equations whose solutions admit k-jet approximations and are invariant under arbitrary coordinate transformations. As an example of higher-order geodesic deviation equations, we study the first- and second-order geodesic deviation equations for a Finsler spray.
引用
收藏
页数:25
相关论文
共 50 条