A wavelet adaptive Newton method for the solution of nonlinear equations

被引:6
|
作者
Verani, M [1 ]
机构
[1] Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
关键词
adaptivity; nonlinear approximation; wavelets; inexact Newton scheme;
D O I
10.1016/S0893-9659(03)90133-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the solution of nonlinear equations, we present an adaptive wavelet scheme, which couples an inexact Newton method and the idea of nonlinear wavelet approximation. In particular, we obtain a result of quadratic convergence. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1301 / 1306
页数:6
相关论文
共 50 条
  • [1] OPTIMAL ASYNCHRONOUS NEWTON METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS
    BOJANCZYK, A
    JOURNAL OF THE ACM, 1984, 31 (04) : 792 - 803
  • [2] Adaptive Gauss–Newton Method for Solving Systems of Nonlinear Equations
    N. E. Yudin
    Doklady Mathematics, 2021, 104 : 293 - 296
  • [3] A MULTIRESOLUTION ADAPTIVE WAVELET METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
    Harnish, C.
    Dalessandro, L.
    Matous, K.
    Livescu, D.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2021, 19 (02) : 29 - 37
  • [4] An adaptive wavelet method for nonlinear differential-algebraic equations
    Gao, Jing
    Jiang, Yao-Lin
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 208 - 220
  • [5] On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases
    Beylkin, G
    Keiser, JM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (02) : 233 - 259
  • [6] On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases
    Beylkin, G.
    Keiser, J. M.
    Journal of Computational Physics, 132 (02):
  • [7] Adaptive Gauss-Newton Method for Solving Systems of Nonlinear Equations
    Yudin, N. E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 293 - 296
  • [8] A Wavelet Method for the Solution of Nonlinear Integral Equations with Singular Kernels
    Wang, Jizeng
    Zhang, Lei
    Zhou, Youhe
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 102 (02): : 127 - 148
  • [9] An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations
    Weng, Jiong
    Liu, Xiaojing
    Zhou, Youhe
    Wang, Jizeng
    MATHEMATICS, 2022, 10 (21)
  • [10] The Newton-arithmetic mean method for the solution of systems of nonlinear equations
    Galligani, E
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (01) : 9 - 34