A Predictive Model for Severe COVID-19 in the Medicare Population: A Tool for Prioritizing Primary and Booster COVID-19 Vaccination
被引:8
|
作者:
Experton, Bettina
论文数: 0引用数: 0
h-index: 0
机构:
Humetrix Inc, Del Mar, CA 90214 USAHumetrix Inc, Del Mar, CA 90214 USA
Experton, Bettina
[1
]
Tetteh, Hassan A.
论文数: 0引用数: 0
h-index: 0
机构:
Dept Def Joint Artificial Intelligence Ctr JAIC, Warfighter Hlth Mission Team, Arlington, VA 22202 USAHumetrix Inc, Del Mar, CA 90214 USA
Tetteh, Hassan A.
[2
]
Lurie, Nicole
论文数: 0引用数: 0
h-index: 0
机构:
Coalit Epidem Preparedness Innovat CEPI, Washington, DC 20006 USA
Harvard Med Sch, Dept Med, Boston, MA 02115 USAHumetrix Inc, Del Mar, CA 90214 USA
Lurie, Nicole
[3
,4
]
Walker, Peter
论文数: 0引用数: 0
h-index: 0
机构:
US Navy, Washington, DC 20376 USAHumetrix Inc, Del Mar, CA 90214 USA
Walker, Peter
[5
]
Elena, Adrien
论文数: 0引用数: 0
h-index: 0
机构:
Humetrix Inc, Del Mar, CA 90214 USAHumetrix Inc, Del Mar, CA 90214 USA
Elena, Adrien
[1
]
Hein, Christopher S.
论文数: 0引用数: 0
h-index: 0
机构:
Humetrix Inc, Del Mar, CA 90214 USAHumetrix Inc, Del Mar, CA 90214 USA
Hein, Christopher S.
[1
]
Schwendiman, Blake
论文数: 0引用数: 0
h-index: 0
机构:
Humetrix Inc, Del Mar, CA 90214 USAHumetrix Inc, Del Mar, CA 90214 USA
Schwendiman, Blake
[1
]
Vincent, Justin L.
论文数: 0引用数: 0
h-index: 0
机构:
Amazon Web Serv Inc, Seattle, WA 98109 USAHumetrix Inc, Del Mar, CA 90214 USA
Vincent, Justin L.
[6
]
Burrow, Christopher R.
论文数: 0引用数: 0
h-index: 0
机构:
Humetrix Inc, Del Mar, CA 90214 USAHumetrix Inc, Del Mar, CA 90214 USA
Burrow, Christopher R.
[1
]
机构:
[1] Humetrix Inc, Del Mar, CA 90214 USA
[2] Dept Def Joint Artificial Intelligence Ctr JAIC, Warfighter Hlth Mission Team, Arlington, VA 22202 USA
[3] Coalit Epidem Preparedness Innovat CEPI, Washington, DC 20006 USA
[4] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
COVID-19 vaccine prioritization;
COVID-19 booster vaccine;
severe COVID-19 disease;
risk for severe COVID-19 infection;
COVID-19 vaccine booster prioritization;
Medicare population;
severe COVID-19 risk model;
D O I:
10.3390/biology10111185
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Simple SummaryWhether it is for COVID-19 primary vaccination or the administration of booster vaccines, prioritization criteria need to be established to optimize COVID-19 vaccination programs accounting for both clinical and social vulnerability risks for severe COVID-19 disease. We developed a dual socio-clinical risk model for severe COVID-19 disease in the Medicare population, which is comprised mostly of individuals aged 65 and over. Our model generated risk levels correlated with regionalized COVID-19 case hospitalization rates and mapped them at the county and zip code levels. The model and map can be used by health jurisdictions to reach out to unvaccinated individuals. Our model approach can also be applied to identify Medicare beneficiaries who were in early vaccination groups to be vaccinated to identify those who might maximally benefit from an additional dose of COVID-19 vaccine if and when vaccine immunity wanes.Recommendations for prioritizing COVID-19 vaccination have focused on the elderly at higher risk for severe disease. Existing models for identifying higher-risk individuals lack the needed integration of socio-demographic and clinical risk factors. Using multivariate logistic regression and random forest modeling, we developed a predictive model of severe COVID-19 using clinical data from Medicare claims for 16 million Medicare beneficiaries and socio-economic data from the CDC Social Vulnerability Index. Predicted individual probabilities of COVID-19 hospitalization were then calculated for population risk stratification and vaccine prioritization and mapping. The leading COVID-19 hospitalization risk factors were non-white ethnicity, end-stage renal disease, advanced age, prior hospitalization, leukemia, morbid obesity, chronic kidney disease, lung cancer, chronic liver disease, pulmonary fibrosis or pulmonary hypertension, and chemotherapy. However, previously reported risk factors such as chronic obstructive pulmonary disease and diabetes conferred modest hospitalization risk. Among all social vulnerability factors, residence in a low-income zip code was the only risk factor independently predicting hospitalization. This multifactor risk model and its population risk dashboard can be used to optimize COVID-19 vaccine allocation in the higher-risk Medicare population.
机构:
Vardhman Mahavir Med Coll, Dept Obstet & Gynaecol, New Delhi 110023, India
Safdarjang Hosp, New Delhi 110023, IndiaVardhman Mahavir Med Coll, Dept Obstet & Gynaecol, New Delhi 110023, India
Sarwal, Yamini
Sarwal, Tanvi
论文数: 0引用数: 0
h-index: 0
机构:Vardhman Mahavir Med Coll, Dept Obstet & Gynaecol, New Delhi 110023, India
Sarwal, Tanvi
Sarwal, Rakesh
论文数: 0引用数: 0
h-index: 0
机构:
Nat Inst Transforming India, New Delhi, IndiaVardhman Mahavir Med Coll, Dept Obstet & Gynaecol, New Delhi 110023, India
机构:
Chinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R ChinaChinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R China
Su, Binbin
Luo, Yannan
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Publ Hlth, Dept Global Hlth, Beijing, Peoples R ChinaChinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R China
Luo, Yannan
Tian, Yaohua
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Med Coll, Sch Publ Hlth, Key Lab Environm & Hlth, Minist Educ, Wuhan, Hubei, Peoples R China
Tongji Med Coll, Sch Publ Hlth, State Key Lab Environm Hlth Incubating, Wuhan, Hubei, Peoples R ChinaChinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R China
Tian, Yaohua
Chen, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R ChinaChinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R China
Chen, Chen
Zheng, Xiaoying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R ChinaChinese Acad Med Sci, Peking Union Med Coll, Sch Populat Med & Publ Hlth, Beijing, Peoples R China