FINITE ELEMENT DISCRETIZATION METHODS FOR VELOCITY-PRESSURE AND STREAM FUNCTION FORMULATIONS OF SURFACE STOKES EQUATIONS

被引:16
|
作者
Brandner, Philip [1 ]
Jankuhn, Thomas [1 ]
Praetorius, Simon [2 ]
Reusken, Arnold [1 ]
Voigt, Axel [2 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometr & Prakt Math, D-52056 Aachen, Germany
[2] Tech Univ Dresden, Inst Wissensch Liches Rechnen, D-01062 Dresden, Germany
[3] Ctr Syst Biol Dresden CSBD, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2022年 / 44卷 / 04期
关键词
surface Stokes equation; trace finite element method; surface finite element method; Taylor-Hood finite elements; stream function formulation; higher order surface approximation; NAVIER-STOKES; IMPLICIT GEOMETRIES; ERROR ANALYSIS; FLOWS; PDES; INTERFACE; VORTICES; DYNAMICS; DOMAINS; MOTION;
D O I
10.1137/21M1403126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study parametric trace finite element (TraceFEM) and parametric surface finite element (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
引用
收藏
页码:A1807 / A1832
页数:26
相关论文
共 50 条