Discrete crack dynamics: A planar model of crack propagation and crack-inclusion interactions in brittle materials

被引:13
|
作者
Ebrahimi, M. T. [1 ]
Dini, D. [2 ]
Balint, D. S. [2 ]
Sutton, A. P. [1 ]
Ozbayraktar, S. [3 ]
机构
[1] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mech Engn, Exhibit Rd, London SW7 2AZ, England
[3] Element Six Ltd, Global Innovat Ctr, Didcot, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Crack-inclusion interactions; Multipole method; Discrete crack dynamics; STRESS INTENSITY FACTORS; EFFECTIVE STIFFNESS; FRACTURE-MECHANICS; ELASTIC SOLIDS; ELEMENT-METHOD; GROWTH; COMPOSITE; MICROCRACKING; COMPRESSION; METHODOLOGY;
D O I
10.1016/j.ijsolstr.2018.02.036
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Multipole Method (MPM) is used to simulate the many-body self-consistent problem of interacting elliptical micro-cracks and inclusions in single crystals. A criterion is employed to determine the crack propagation path based on the stress distribution; the evolution of individual micro-cracks and their interactions with existing cracks and inclusions is then predicted using what we coin the Discrete Crack Dynamics (DCD) method. DCD is fast (semi-analytical) and particularly suitable for the simulation of evolving low-speed crack networks in brittle or quasi-brittle materials. The method is validated against finite element analysis predictions and previously published experimental data. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:12 / 27
页数:16
相关论文
共 50 条
  • [1] Discrete element model for crack propagation in brittle materials
    Le, Ba Danh
    Koval, Georg
    Chazallon, Cyrille
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (04) : 583 - 595
  • [2] Dynamics of crack propagation in brittle materials
    Boudet, JF
    Ciliberto, S
    Steinberg, V
    JOURNAL DE PHYSIQUE II, 1996, 6 (10): : 1493 - 1516
  • [3] The effect of the interphase on crack-inclusion interactions
    B.A. Cheeseman
    M.H. Santare
    International Journal of Fracture, 2001, 109 : 303 - 323
  • [4] The effect of the interphase on crack-inclusion interactions
    Cheeseman, BA
    Santare, MH
    INTERNATIONAL JOURNAL OF FRACTURE, 2001, 109 (03) : 303 - 323
  • [5] A discrete crack dynamics model of toughening in brittle polycrystalline material by crack deflection
    Ebrahimi, M. T.
    Balint, D. S.
    Sutton, A. P.
    Dini, D.
    ENGINEERING FRACTURE MECHANICS, 2019, 214 : 95 - 111
  • [6] Stochastic model of crack propagation in brittle heterogeneous materials
    Khasin, Vladimir L.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 82 : 101 - 123
  • [7] THE CRACK-INCLUSION INTERACTION PROBLEM
    LIU, XH
    ERDOGAN, F
    ENGINEERING FRACTURE MECHANICS, 1986, 23 (05) : 821 - 832
  • [8] ON ELASTIC CRACK-INCLUSION INTERACTION
    KUNIN, I
    GOMMERSTADT, B
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1985, 21 (07) : 757 - 766
  • [9] Crack propagation in brittle heterogeneous solids: Material disorder and crack dynamics
    Laurent Ponson
    Daniel Bonamy
    International Journal of Fracture, 2010, 162 : 21 - 31
  • [10] Propagation of planar crack fronts in heterogeneous brittle materials of finite dimensions
    Patinet, Sylvain
    Frelat, Joel
    Lazarus, Veronique
    Vandembroucq, Damien
    MECANIQUE & INDUSTRIES, 2011, 12 (03): : 199 - 204