The mukai pairing - II: the Hochschild-Kostant-Rosenberg isomorphism

被引:90
|
作者
Caldararu, A [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Hochschild homology; Mukai pairing; Hochschild-Kostant-Rosenberg isomorphism;
D O I
10.1016/j.aim.2004.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the Hochschild structure of a smooth space that we began in our previous paper, examining implications of the Hochschild-Kostant-Rosenberg theorem. The main contributions of the present paper are: we introduce a generalization of the usual notions of Mukai vector and Mukai pairing on differential forms that applies to arbitrary manifolds; we give a proof of the fact that the natural Chern character map K-0(X) -> HH0(X) becomes, after the HKR isomorphism, the usual one K-0(X) -> circle plus H-i(X, Omega(I)(X)); and we present a conjecture that relates the Hochschild and harmonic structures of a smooth space, similar in spirit to the Tsygan formality conjecture. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 66
页数:33
相关论文
共 13 条
  • [1] The Hochschild-Kostant-Rosenberg Isomorphism for Quantized Analytic Cycles
    Grivaux, Julien
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (04) : 865 - 913
  • [2] A universal Hochschild-Kostant-Rosenberg theorem
    Moulinos, Tasos
    Robalo, Marco
    Toen, Bertrand
    GEOMETRY & TOPOLOGY, 2022, 26 (02) : 777 - 874
  • [3] An analytic Hochschild-Kostant-Rosenberg theorem
    Kelly, Jack
    Kremnizer, Kobi
    Mukherjee, Devarshi
    ADVANCES IN MATHEMATICS, 2022, 410
  • [4] Topological Hochschild homology and the condition of Hochschild-Kostant-Rosenberg
    Larsen, M
    Lindenstrauss, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1627 - 1638
  • [5] Counterexamples to Hochschild-Kostant-Rosenberg in characteristic p
    Antieau, Benjamin
    Bhatt, Bhargav
    Mathew, Akhil
    FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [6] On the Hochschild-Kostant-Rosenberg map for graded manifolds
    Cattaneo, AS
    Fiorenza, D
    Longoni, R
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (62) : 3899 - 3918
  • [7] A Hochschild-Kostant-Rosenberg theorem for cyclic homology
    Bokstedt, Marcel
    Ottosen, Iver
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (06) : 1458 - 1493
  • [8] A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology
    Binda, Federico
    Lundemo, Tommy
    Park, Doosung
    Ostvaer, Paul Arne
    ADVANCES IN MATHEMATICS, 2023, 435
  • [9] A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p
    Antieau, Benjamin
    Vezzosi, Gabriele
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (03) : 1135 - 1145
  • [10] Extensions of cocommutative coalgebras and a Hochschild-Kostant-Rosenberg type theorem
    Farinati, MA
    Solotar, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (10) : 4721 - 4758