Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs

被引:17
|
作者
Kim, Jeong-Bae [1 ]
Habimana, Jean de Dieu [2 ]
Kim, Seon-Ho [1 ]
Bae, Deg-Hyo [1 ]
机构
[1] Sejong Univ, Dept Civil & Environm Engn, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Geog Inst Burundi IGEBU, Dept Hydrometeorol, POB 331, Bujumbura, Burundi
关键词
hydroclimate modeling; Ruvubu River; Burundi; climate change; hydroclimatic extremes; EXTREMES; EVENTS;
D O I
10.3390/su132112037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Burundi is susceptible to future water-related disasters, but examining the influence of climate change on regional hydroclimatic features is challenging due to a lack of local data and adaptation planning. This study investigated the influence of climate change on hydroclimate-focused changes in the climatology of heavy precipitation (and streamflow) means and extremes based on the multi-model ensemble mean of earth system models in the sixth phase of the Coupled Model Intercomparison Project (CMIP). For runoff analysis, hydrologic responses to future climate conditions were simulated using the Soil and Water Assessment Tool (SWAT) model over the Ruvubu River basin, Burundi. Temperature increases by 5.6 degrees C, with strong robustness, under future climate conditions. The mean annual precipitation (and runoff) undergoes large seasonal variations, with weak robustness. Precipitation (and streamflow) changes between the wet and dry seasons differ in signal and magnitude. However, alterations in both the amount and frequency of precipitation reveal the intensification of the water cycle due to anthropogenic climate change. Thus, the highest variability in the maximum daily streamflow is shown in months of long wet seasons, especially in the far future (2085). Without considering the regional climate characteristics and shared socioeconomic pathway (SSP) scenarios, this behavior is expected to be enhanced in 2085 (compared with 2045) and increase the severity of extreme precipitation and flood risk. Climate change will cause alterations in the magnitude and seasonal distributions of extreme precipitation (and streamflow). These findings could be important for flood planning and mitigation measures to cope with climate change in Burundi.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Climate change impacts on wind energy resources in North America based on the CMIP6 projections
    Martinez, A.
    Iglesias, G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 806
  • [2] Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model
    Wang, Yong
    Xu, Hong-Mei
    Li, Yong-Hua
    Liu, Lyu-Liu
    Hu, Zu-Heng
    Xiao, Chan
    Yang, Tian-Tian
    WATER, 2022, 14 (22)
  • [3] Assessment of climate change impacts on hydrological processes in the Usangu catchment of Tanzania under CMIP6 scenarios
    Mollel, Gift Raphael
    Mulungu, Deogratias M. M.
    Nobert, Joel
    Alexander, Augustina C.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (11) : 4162 - 4182
  • [4] Projection of climate change impacts on hydropower in the source region of the Yangtze River based on CMIP6
    Zhao, Yinmao
    Xu, Kui
    Dong, Ningpeng
    Wang, Hao
    JOURNAL OF HYDROLOGY, 2022, 606
  • [5] Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections
    Ramasamy, Maruthadurai
    Das, Bappa
    Ramesh, R.
    JOURNAL OF PEST SCIENCE, 2022, 95 (02) : 841 - 854
  • [6] Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections
    Maruthadurai Ramasamy
    Bappa Das
    R. Ramesh
    Journal of Pest Science, 2022, 95 : 841 - 854
  • [7] Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6
    Hou, Xinyuan
    Wild, Martin
    Folini, Doris
    Kazadzis, Stelios
    Wohland, Jan
    EARTH SYSTEM DYNAMICS, 2021, 12 (04) : 1099 - 1113
  • [8] Assessment of wind and wave energy in China seas under climate change based on CMIP6 climate model
    Xu, Jie
    Li, Jiangxia
    Pan, Shunqi
    Yao, Yu
    Chen, Long
    Wu, Zhiyuan
    ENERGY, 2024, 310
  • [9] Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations
    Monerie, Paul-Arthur
    Wainwright, Caroline M.
    Sidibe, Moussa
    Akinsanola, Akintomide Afolayan
    CLIMATE DYNAMICS, 2020, 55 (5-6) : 1385 - 1401
  • [10] Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations
    Paul-Arthur Monerie
    Caroline M. Wainwright
    Moussa Sidibe
    Akintomide Afolayan Akinsanola
    Climate Dynamics, 2020, 55 : 1385 - 1401