Asymptotic behavior for log-determinants of several non-Hermitian random matrices

被引:2
|
作者
Chen, Lei
Wang, Shaochen [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Log-determinants; Berry-Esseen bounds; moderate deviations; spherical ensembles; circular unitary ensembles; LAW;
D O I
10.1007/s11464-017-0629-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior for log-determinants of two unitary but non-Hermitian random matrices: the spherical ensembles A (-1) B; where A and B are independent complex Ginibre ensembles and the truncation of circular unitary ensembles. The corresponding Berry-Esseen bounds and Cram,r type moderate deviations are established. Our method is based on the estimates of corresponding cumulants. Numerical simulations are also presented to illustrate the theoretical results.
引用
收藏
页码:805 / 819
页数:15
相关论文
共 50 条
  • [1] Asymptotic behavior for log-determinants of several non-Hermitian random matrices
    Lei Chen
    Shaochen Wang
    Frontiers of Mathematics in China, 2017, 12 : 805 - 819
  • [2] High-dimensional asymptotic behavior of the difference between the log-determinants of two Wishart matrices
    Yanagihara, Hirokazu
    Oda, Ryoya
    Hashiyama, Yusuke
    Fujikoshi, Yasunori
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 157 : 70 - 86
  • [3] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [4] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [5] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [6] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [7] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [8] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245
  • [9] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560
  • [10] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):