Analysis on the Potential Performance of GPS and Galileo Precise Point Positioning using Simulated Real-Time Products

被引:5
|
作者
Basile, Francesco [1 ]
Moore, Terry [1 ]
Hill, Chris [1 ]
机构
[1] Univ Nottingham, Nottingham Geospatial Inst, Nottingham NG7 2RD, England
来源
JOURNAL OF NAVIGATION | 2019年 / 72卷 / 01期
关键词
Precise Point Positioning; Galileo; GPS; Ionosphere; PPP;
D O I
10.1017/S0373463318000577
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
With the evolving Global Navigation Satellite System (GNSS) landscape, the International GNSS Service (IGS) has started the Multi-GNSS Experiment (MGEX) to produce precise products for new generation systems. Various analysis centres are working on the estimation of precise orbits, clocks and bias for Galileo, Beidou and Quasi-Zenith Satellite System (QZSS) satellites. However, at the moment these products can only be used for post-processing applications. Indeed, the IGS Real-Time service only broadcasts Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) corrections. In this research, a simulator of multi-GNSS observations and real-time precise products has been developed to analyse the performance of GPS-only, Galileo-only and GPS plus Galileo Precise Point Positioning (PPP). The error models in the simulated orbits and clocks were based on the difference between the GPS Real-Time and the Final products. Multiple scenarios were analysed, considering different signals combined in the Ionosphere Free linear combination. Results in a simulated open area environment show better performance of the Galileo-only case over the GPS-only case. Indeed, up 33% and 29% of improvement, respectively, in the accuracy level and convergence time can be observed when using the full Galileo constellation compared to GPS. The dual constellation case provides good improvements, in particular in the convergence time (47% faster than GPS). This paper will also consider the impact of different linear combinations of the Galileo signals, and the potential of the E5 Alternative Binary Offset Carrier (AltBOC) signal. Even though it is significantly more precise than E5a, the PPP performance obtained with the Galileo E1-E5a combination is either better or similar to the one with Galileo E1-E5. The reason for this inconsistency was found in the use of the ionosphere free combination with E1. Finally, alternative methods of ionosphere error mitigation are considered in order to ensure the best possible positioning performance from the Galileo E5 signal in multi-frequency PPP.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [1] Analysis of Performance of Real-time GPS Precise Point Positioning
    Meng, Xiangguang
    Guo, Jiming
    Zhang, Shaocheng
    Shi, Junbo
    CSNC 2011: 2ND CHINA SATELLITE NAVIGATION CONFERENCE, VOLS 1-3, 2011, : 1195 - 1199
  • [2] Performance Analysis of Real-Time GPS/Galileo Precise Point Positioning Integrated with Inertial Navigation System
    Zhao, Lei
    Blunt, Paul
    Yang, Lei
    Ince, Sean
    SENSORS, 2023, 23 (05)
  • [3] BDS/GPS/Galileo Precise Point Positioning Performance Analysis of Android Smartphones Based on Real-Time Stream Data
    Li, Mengyuan
    Huang, Guanwen
    Wang, Le
    Xie, Wei
    REMOTE SENSING, 2023, 15 (12)
  • [4] GPS/GLONASS PRECISE POINT POSITIONING WITH IGS REAL-TIME SERVICE PRODUCTS
    Krzan, Grzegorz
    Przestrzelski, Pawel
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2016, 13 (01): : 69 - 81
  • [5] Performance comparison of Precise Point Positioning using real-time oriented GNSS products
    Lopez, Ernesto M.
    Rodriguez, Santiago
    Garcia, Javier G.
    Muravchik, Carlos H.
    2019 ARGENTINE CONFERENCE ON ELECTRONICS (CAE), 2019, : 52 - 57
  • [6] Performance Analysis of Several GPS/Galileo Precise Point Positioning Models
    Afifi, Akram
    El-Rabbany, Ahmed
    SENSORS, 2015, 15 (06) : 14701 - 14726
  • [7] Performance of Real-Time Precise Point Positioning
    Chen, Junping
    Li, Haojun
    Wu, Bin
    Zhang, Yize
    Wang, Jiexian
    Hu, Congwei
    MARINE GEODESY, 2013, 36 (01) : 98 - 108
  • [8] Performance analysis of real-time precise point positioning with GPS and BDS state space representation
    Liu, Peng
    Ling, Keck Voon
    Qin, Honglei
    Liu, Tianjun
    MEASUREMENT, 2023, 215
  • [9] Evaluation of Triple-Frequency GPS/Galileo/Beidou Kinematic Precise Point Positioning Using Real-Time CNES Products for Maritime Applications
    Abdelazeem, Mohamed
    Celik, Rahmi N.
    ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2023, 58 (04): : 314 - 329
  • [10] Performance of real-time Precise Point Positioning using IGS real-time service
    Elsobeiey, Mohamed
    Al-Harbi, Salim
    GPS SOLUTIONS, 2016, 20 (03) : 565 - 571