CONTRIBUTIONS TO THE STRUCTURE THEORY OF CONNECTED PRO-LIE GROUPS

被引:0
|
作者
Hofmann, Karl H. [1 ]
Morris, Sidney A. [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
来源
关键词
Connected pro-Lie group; SIN-group; MAP-group; Baire space; Just-non-Lie group;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some recent results in the structure theory of pro-Lie groups and locally compact groups, improvements of known results, and open problems.
引用
收藏
页码:225 / +
页数:3
相关论文
共 50 条
  • [1] Lie Theory and the Structure of pro-Lie groups and pro-Lie algebras
    Hofmann, Karl H.
    Morris, Sidney A.
    TOPOLOGY PROCEEDINGS, VOL 28, NO 2, 2004, 2004, 28 (02): : 541 - 567
  • [2] The Structure of Almost Connected Pro-Lie Groups
    Hofmann, Karl H.
    Morris, Sidney A.
    JOURNAL OF LIE THEORY, 2011, 21 (02) : 347 - 383
  • [3] CONNECTED SUBGROUPS OF PRO-LIE GROUPS
    SCHEIDERER, C
    GEOMETRIAE DEDICATA, 1986, 21 (02) : 231 - 248
  • [4] The structure of abelian pro-Lie groups
    Hofmann, KH
    Morris, SA
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) : 867 - 891
  • [5] The structure of abelian pro-Lie groups
    Karl H. Hofmann
    Sidney A. Morris
    Mathematische Zeitschrift, 2004, 248 : 867 - 891
  • [6] Amenability and representation theory of pro-Lie groups
    Daniel Beltiţă
    Amel Zergane
    Mathematische Zeitschrift, 2017, 286 : 701 - 722
  • [7] PRO-LIE GROUPS
    BAGLEY, RW
    WU, TS
    YANG, JS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (02) : 829 - 838
  • [8] Amenability and representation theory of pro-Lie groups
    Beltita, Daniel
    Zergane, Amel
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 701 - 722
  • [9] Countably Solvable Connected Pro-Lie Groups Are u-Amenable
    A. I. Shtern
    Russian Journal of Mathematical Physics, 2018, 25 : 113 - 115
  • [10] Lattices of homomorphisms and pro-Lie groups
    Leiderman, Arkady G.
    Tkachenko, Mikhail G.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 214 : 1 - 20