A scalable molecular-dynamics algorithm suite for materials simulations: design-space diagram on 1024 Cray T3E processors

被引:0
|
作者
Shimojo, F
Campbell, TJ
Kalia, RK
Nakano, A [1 ]
Vashishta, P
Ogata, S
Tsuruta, K
机构
[1] Louisiana State Univ, Concurrent Comp Lab Mat Simulat, Baton Rouge, LA 70803 USA
[2] Yamaguchi Univ, Dept Appl Sci, Ube, Yamaguchi 7558611, Japan
[3] Okayama Univ, Dept Elect & Elect Engn, Okayama 7008530, Japan
[4] Hiroshima Univ, Fac Integrated Arts & Sci, Higashihiroshima 7398521, Japan
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2000年 / 17卷 / 03期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
parallel computing; molecular dynamics; variable-charge molecular dynamics; tight-binding method; density functional theory;
D O I
10.1016/S0167-739X(00)00087-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A suite of scalable molecular-dynamics (MD) algorithms has been developed for materials simulations. The linear scaling MD algorithms encompass a wide spectrum of physical reality: (i) classical MD based on a many-body interatomic potential model; (ii) environment-dependent, variable-charge MD: (iii) quantum mechanical MD based on the tight-binding method; and (iv) self-consistent quantum MD based on the density functional theory. Benchmark tests on 1024 Gray T3E processors including 1.02-billion-atom many-body and 22 500-atom density functional MD simulations demonstrate that these algorithms are highly scalable. A design-space diagram spanning seven decades of system size and computational time is constructed for materials scientists to design an optimal MD simulation incorporating maximal physical realism within a given computational budget. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 1 条
  • [1] Large-scale molecular dynamics experiments on Cray T3E System
    Dzwinel, W
    Alda, W
    Kitowski, J
    Moscinski, J
    Pogoda, M
    Yuen, DA
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1998, 1401 : 881 - 883