The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model

被引:97
|
作者
Malashetty, MS [1 ]
Shivakumara, IS
Kulkarni, S
机构
[1] Gulbarga Univ, Dept Math, Gulbarga 585106, Karnataka, India
[2] Bangalore Univ, Dept Math, UGC Ctr Adv Studies Fluid Mech, Bangalore 560001, Karnataka, India
关键词
convection; thermal non-equilibrium; Brinkman model; porous medium;
D O I
10.1016/j.ijheatmasstransfer.2004.09.027
中图分类号
O414.1 [热力学];
学科分类号
摘要
The stability of a horizontal fluid saturated, sparsely packed porous layer heated from below and cooled form above when the solid and fluid phases are not in local thermal equilibrium is examined analytically. The Lapwood-Brinkman model is used for the momentum equation and a two-field model is used for energy equation each representing the solid and fluid phases separately. Although the inertia term is included in the general formulation, it does not affect the stability condition since the basic state is motionless. The linear stability theory is employed to obtain the condition for the onset of convection. The effect of thermal non-equilibrium, on the onset of convection is discussed. It is shown that the results of Darcy model for the non-equilibrium case can be recovered in the limit as Darcy number Da --> 0. Asymptotic analysis for both small and large values of the inter phase heat transfer coefficient H is also presented. An excellent agreement is found between the exact solutions and asymptotic solutions when H is very small. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1155 / 1163
页数:9
相关论文
共 50 条
  • [1] The onset of Brinkman ferroconvection using a thermal non-equilibrium model
    Shivakumara, I. S.
    Lee, Jinho
    Ravisha, M.
    Reddy, R. Gangadhara
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (9-10) : 2116 - 2125
  • [2] Boundary and thermal non-equilibrium effects on the onset of Darcy–Brinkman convection in a porous layer
    I. S. Shivakumara
    A. L. Mamatha
    M. Ravisha
    [J]. Journal of Engineering Mathematics, 2010, 67 : 317 - 328
  • [3] A thermal non-equilibrium model with Cattaneo effect for convection in a Brinkman porous layer
    Shivakumara, I. S.
    Ravisha, M.
    Ng, Chiu-On
    Varun, V. L.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 71 : 39 - 47
  • [4] Onset of Darcy-Benard convection using a thermal non-equilibrium model
    Banu, N
    Rees, DAS
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) : 2221 - 2228
  • [5] The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model
    Malashetty, MS
    Shivakumara, IS
    Kulkarni, S
    [J]. TRANSPORT IN POROUS MEDIA, 2005, 60 (02) : 199 - 215
  • [6] The Onset of Convection in an Anisotropic Porous Layer Using a Thermal Non-Equilibrium Model
    M. S. Malashetty
    I. S. Shivakumara
    Sridhar Kulkarni
    [J]. Transport in Porous Media, 2005, 60 : 199 - 215
  • [7] Boundary and thermal non-equilibrium effects on the onset of Darcy-Brinkman convection in a porous layer
    Shivakumara, I. S.
    Mamatha, A. L.
    Ravisha, M.
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2010, 67 (04) : 317 - 328
  • [8] Anisotropic porous penetrative convection for a local thermal non-equilibrium model with Brinkman effects
    Mahajan, Amit
    Nandal, Reena
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 235 - 250
  • [9] The Effect of Local Thermal Non-Equilibrium on the Onset of Brinkman Convection in a Nanofluid Saturated Rotating Porous Layer
    Yadav, Dhananjay
    Lee, Jinho
    [J]. JOURNAL OF NANOFLUIDS, 2015, 4 (03) : 335 - 342
  • [10] Impact of Local Thermal Non-Equilibrium and Gravity Fluctuations on the Onset of a Darcy-Brinkman Porous Convection
    Gangadharaiah, Y. H.
    Manjunatha, N.
    Nagarathnamma, H.
    Udhayakumar, R.
    [J]. CONTEMPORARY MATHEMATICS, 2024, 5 (01):