Norm Resolvent Convergence of Discretized Fourier Multipliers

被引:6
|
作者
Cornean, Horia [1 ]
Garde, Henrik [2 ]
Jensen, Arne [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, Skjernvej 4A, DK-9220 Aalborg O, Denmark
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
关键词
Norm resolvent convergence; Fourier multiplier; Lattice; Hausdorff distance;
D O I
10.1007/s00041-021-09876-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Holder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Norm Resolvent Convergence of Discretized Fourier Multipliers
    Horia Cornean
    Henrik Garde
    Arne Jensen
    Journal of Fourier Analysis and Applications, 2021, 27
  • [2] Norm-resolvent convergence in perforated domains
    Cherednichenko, K.
    Dondl, P.
    Rosier, F.
    ASYMPTOTIC ANALYSIS, 2018, 110 (3-4) : 163 - 184
  • [3] Norm estimates of the Fourier series coefficients of the matrix resolvent
    Sadkane, M
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 149 - 153
  • [4] WEIGHTED NORM INEQUALITIES FOR MULTILINEAR FOURIER MULTIPLIERS
    Fujita, Mai
    Tomita, Naohito
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6335 - 6353
  • [5] Wildly perturbed manifolds: norm resolvent and spectral convergence
    Anne, Colette
    Post, Olaf
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (01) : 229 - 279
  • [6] On norm resolvent convergence of Schrodinger operators with δ′-like potentials
    Golovaty, Yu D.
    Hryniv, R. O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (15)
  • [7] Discrete approximations to Dirac operators and norm resolvent convergence
    Cornean, Horia
    Garde, Henrik
    Jensen, Arne
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1589 - 1622
  • [8] On the (p,p) norm of monotonic Fourier multipliers
    De Carli, L
    Laeng, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 657 - 662
  • [9] Generalised norm resolvent convergence: comparison of different concepts
    Post, Olaf
    Zimmer, Sebastian
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1459 - 1506
  • [10] Weighted norm inequalities for Weyl multipliers and fourier multipliers on the Heisenberg group
    Sayan Bagchi
    Sundaram Thangavelu
    Journal d'Analyse Mathématique, 2018, 136 : 1 - 29