Scientific AI in materials science: a path to a sustainable and scalable paradigm

被引:51
|
作者
DeCost, B. L. [1 ]
Hattrick-Simpers, J. R. [1 ]
Trautt, Z. [1 ]
Kusne, A. G. [1 ]
Campo, E. [2 ,3 ]
Green, M. L. [1 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD USA
[2] Natl Sci Fdn, Arlington, VA USA
[3] Campostella Res & Consulting LLC, Alexandria, VA USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2020年 / 1卷 / 03期
关键词
materials science; artificial intelligence; reproducible science; cross-discplinary research; NEURAL-NETWORKS; COMBINATORIAL;
D O I
10.1088/2632-2153/ab9a20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently there has been an ever-increasing trend in the use of machine learning (ML) and artificial intelligence (AI) methods by the materials science, condensed matter physics, and chemistry communities. This perspective article identifies key scientific, technical, and social opportunities that the materials community must prioritize to consistently develop and leverage Scientific AI (SciAI) to provide a credible path towards the advancement of current materials-limited technologies. Here we highlight the intersections of these opportunities with a series of proposed paths forward. The opportunities are roughly sorted from scientific/technical (e.g. development of robust, physically meaningful multiscale material representations) to social (e.g. promoting an AI-ready workforce). The proposed paths forward range from developing new infrastructure and capabilities to deploying them in industry and academia. We provide a brief introduction to AI in materials science and engineering, followed by detailed discussions of each of the opportunities and paths forward.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] AI for Scientific Discovery and a Sustainable Future
    Gomes, Carla P.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 2 - 2
  • [2] A sustainable path for space science
    Richard Archer
    Marcell Tessenyi
    Giovanna Tinetti
    Jonathan Tennyson
    Martin Charles Faulkes
    Giorgio Savini
    Philip Windred
    Dan Brown
    Billy Edwards
    Ian Stotesbury
    Max Joshua
    Ben Wilcock
    Nature Astronomy, 2020, 4 : 1017 - 1018
  • [3] A sustainable path for space science
    Archer, Richard
    Tessenyi, Marcell
    Tinetti, Giovanna
    Tennyson, Jonathan
    Faulkes, Martin Charles
    Savini, Giorgio
    Windred, Philip
    Brown, Dan
    Edwards, Billy
    Stotesbury, Ian
    Joshua, Max
    Wilcock, Ben
    NATURE ASTRONOMY, 2020, 4 (11) : 1017 - 1018
  • [4] Science of Translation Today: Change of Scientific Paradigm
    Garbovskiy, Nikolay
    Kostikova, Olga
    META, 2012, 57 (01) : 48 - 66
  • [5] Nonclassical modern scientific paradigm and historical science
    Hvostova, K. V.
    VOPROSY FILOSOFII, 2014, (10) : 25 - 36
  • [6] Organic materials Energy efficient, sustainable and scalable
    Agbenyega, Jonathan
    MATERIALS TODAY, 2011, 14 (10) : 449 - 449
  • [7] Scalable and Sustainable Synthesis of Advanced Porous Materials
    Peh, Shing Bo
    Wang, Yuxiang
    Zhao, Dan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (04) : 3647 - 3670
  • [8] Role of AI in experimental materials science
    Milad Abolhasani
    Keith A. Brown
    MRS Bulletin, 2023, 48 : 134 - 141
  • [9] Role of AI in experimental materials science
    Abolhasani, Milad
    Brown, Keith A.
    MRS BULLETIN, 2023, 48 (02) : 134 - 141
  • [10] Digital Trends of the Scientific and Technological Revolution: Institutional Transformations of Science and Education Systems in the Paradigm of Sustainable Social Development
    Zinchenko, Viktor
    Mielkov, Yurii
    NEW MEDIA PEDAGOGY: RESEARCH TRENDS, METHODOLOGICAL CHALLENGES, AND SUCCESSFUL IMPLEMENTATIONS, NMP 2023, 2024, 2130 : 441 - 453