Applying a Machine Learning Approach to Predict Acute Toxicities During Radiation for Breast Cancer Patients

被引:11
|
作者
Reddy, J. [1 ]
Lindsay, W. D. [2 ]
Berlind, C. G. [3 ]
Ahern, C. A. [4 ]
Smith, B. D. [5 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Oncora Med Inc, Philadelphia, PA USA
[4] Oncora Med, Philadelphia, PA USA
[5] MD Anderson Canc Ctr, Houston, TX USA
关键词
D O I
10.1016/j.ijrobp.2018.06.167
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
116
引用
收藏
页码:S59 / S59
页数:1
相关论文
共 50 条
  • [1] Applying a Machine Learning Approach to Predict Acute Radiation Toxicities for Head and Neck Cancer Patients
    Reddy, J. P.
    Lindsay, W. D.
    Berlind, C. G.
    Ahern, C. A.
    Holmes, A.
    Smith, B. D.
    Phan, J.
    Frank, S. J.
    Gunn, G. B.
    Rosenthal, D. I.
    Morrison, W. H.
    Garden, A. S.
    Chronowski, G. M.
    Shah, S. J.
    Mayo, L. L.
    Fuller, C. D.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S69 - S69
  • [2] Applying a Machine Learning Approach to Predict Acute Radiation Toxicities for Head and Neck Cancer Patients (vol 105, pg S69, 2019)
    Reddy, J. P.
    Lindsay, W. D.
    Berlind, C. G.
    Ahern, C. A.
    Holmes, A.
    Smith, B. D.
    Phan, J.
    Frank, S. J.
    Gunn, G. B.
    Rosenthal, D., I
    Morrison, W. H.
    Garden, A. S.
    Chronowski, G. M.
    Shah, S. J.
    Mayo, L. L.
    Fuller, C. D.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 106 (01): : 223 - 223
  • [3] Using Machine Learning to Predict Radiation Induced Toxicities for Oropharyngeal Cancer
    Cui, T.
    Ward, M.
    Murray, E.
    Potter, J.
    Dorfmeyer, J.
    Joshi, N.
    Greskovich, J.
    Koyfman, S.
    Xia, P.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3281 - 3281
  • [4] A machine learning approach to predict healthcare cost of breast cancer patients
    Rakshit, Pratyusha
    Zaballa, Onintze
    Perez, Aritz
    Gomez-Inhiesto, Elisa
    Acaiturri-Ayesta, Maria T.
    Lozano, Jose A.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] A machine learning approach to predict healthcare cost of breast cancer patients
    Pratyusha Rakshit
    Onintze Zaballa
    Aritz Pérez
    Elisa Gómez-Inhiesto
    Maria T. Acaiturri-Ayesta
    Jose A. Lozano
    [J]. Scientific Reports, 11
  • [6] Benchmarking machine learning approaches to predict radiation-induced toxicities in lung cancer patients
    Nunez-Benjumea, Francisco J.
    Gonzalez-Garcia, Sara
    Moreno-Conde, Alberto
    Riquelme-Santos, Jose C.
    Lopez-Guerra, Jose L.
    [J]. CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2023, 41
  • [7] Photographic image processing to predict radiation dermatitis in breast cancer patients using machine learning algorithms
    Lee, Chou-Hsien
    Kang, Chen-Lin
    Tseng, Chin-Dar
    Chou, Chi-Ming
    Shieh, Chin-Shiuh
    Lin, Chih-Hsueh
    Tsai, I-Hsing
    Li, Bo-Sheng
    Ren, Jia-Hong
    Chao, Pei-Ju
    Lee, Tsair-Fwu
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (14N16):
  • [8] Breast Cancer Patients' Depression Prediction by Machine Learning Approach
    Cvetkovic, Jovana
    [J]. CANCER INVESTIGATION, 2017, 35 (08) : 569 - 572
  • [9] Applying Machine Learning to Predict Esophageal Cancer Recurrence after Esophagectomy
    Kapcio, Kevin C.
    Lyu, Hanjia
    Purrman, Kyle
    Buda, Alexandra
    Peyre, Christian G.
    Jones, Carolyn E.
    Luo, Jiebo
    Lada, Michal J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2022, 235 (05) : S258 - S258
  • [10] Applying Machine Learning to Predict Esophageal Cancer Recurrence after Esophagectomy
    Lyu, Hanjia
    Kapcio, Kevin
    Purrman, Kyle
    Peyre, Christian
    Jones, Carolyn
    Lada, Michal
    Luo, Jiebo
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 258 - 262