Prox-regularity of spectral functions and spectral sets

被引:0
|
作者
Daniilidis, Aris [1 ]
Lewis, Adrian [2 ]
Malick, Jerome [3 ]
Sendov, Hristo [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Cerdanyola Val, Spain
[2] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
[3] CNRS, Lab J Kunztmann, Grenoble, France
[4] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
基金
美国国家科学基金会;
关键词
spectral function; prox-regular function; eigenvalue optimization; invariant function; permutation theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Important properties such as differentiability and convexity of symmetric functions in R(n) can be transferred to the corresponding spectral functions and vice-versa. Continuing to built on this line of research, we hereby prove that a spectral function F: S(n) -> R U {+infinity} is prox-regular if and only if the underlying symmetric function f : R(n) R U {+infinity} is prox-regular. Relevant properties of symmetric sets are also discussed.
引用
收藏
页码:547 / 560
页数:14
相关论文
共 50 条