p-Laplace operator and diameter of manifolds

被引:10
|
作者
Grosjean, JF [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan Math, F-54506 Vandoeuvre Les Nancy, France
关键词
p-Laplacian; hypersurfaces; curvature; geometric inequalities;
D O I
10.1007/s10455-005-6637-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-n, g) beacompact Riemannian manifold without boundary. In this paper, we consider the first nonzero eigenvalue of the p-Laplacian lambda(1,p)(M) and we prove that the limit of (p)root(1,p)(M) when p --> infinity is 2/d(M), where d(M) is the diameter of M. Moreover, if (M-n, g) is an oriented compact hypersurface of the Euclidean space Rn+1 or Sn+1, we prove an upper bound of lambda(1,p)(M) in terms of the largest principal curvature. over M. As applications of these results, we obtain optimal lower bounds of d(M) in terms of the curvature. In particular, we prove that if M is a hypersurface of Rn+1 then: d(M) >= pi/kappa.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 50 条
  • [1] p-Laplace Operator and Diameter of Manifolds
    Jean-François Grosjean
    Annals of Global Analysis and Geometry, 2005, 28 : 257 - 270
  • [2] Eigenvalue estimates for the p-Laplace operator on manifolds
    Lima, Barnabe Pessoa
    Bezerra Montenegro, Jose Fabio
    Santos, Newton Luis
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 771 - 781
  • [3] Global Comparison Principles for the p-Laplace Operator on Riemannian Manifolds
    Holopainen, Ilkka
    Pigola, Stefano
    Veronelli, Giona
    POTENTIAL ANALYSIS, 2011, 34 (04) : 371 - 384
  • [4] Global Comparison Principles for the p-Laplace Operator on Riemannian Manifolds
    Ilkka Holopainen
    Stefano Pigola
    Giona Veronelli
    Potential Analysis, 2011, 34 : 371 - 384
  • [5] Homogenization of Variational Inequalities for the p-Laplace Operator in Perforated Media Along Manifolds
    D. Gómez
    E. Pérez
    A. V. Podolskii
    T. A. Shaposhnikova
    Applied Mathematics & Optimization, 2019, 79 : 695 - 713
  • [6] Homogenization of Variational Inequalities for the p-Laplace Operator in Perforated Media Along Manifolds
    Gomez, D.
    Perez, E.
    Podolskii, A., V
    Shaposhnikova, T. A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (03): : 695 - 713
  • [7] On the Zaremba Problem for the p-Laplace Operator
    Shestakov, I.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS V, 2013, 591 : 259 - 271
  • [8] Eigenvalue estimate of the p-Laplace operator
    Wang L.
    Lobachevskii Journal of Mathematics, 2009, 30 (3) : 235 - 242
  • [9] First eigenvalue for the p-Laplace operator
    Matei, AM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (08) : 1051 - 1068
  • [10] On the Dependence on p of the Variational Eigenvalues of the p-Laplace Operator
    Marco Degiovanni
    Marco Marzocchi
    Potential Analysis, 2015, 43 : 593 - 609