Sparse Matrix-Vector Multiplication Optimizations based on Matrix Bandwidth Reduction using NVIDIA CUDA

被引:7
|
作者
Xu, Shiming [1 ]
Lin, Hai Xiang [1 ]
Xue, Wei [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
关键词
SpMV; GP-GPU; NVIDIA CUDA; RCM;
D O I
10.1109/DCABES.2010.162
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose the optimization of sparse matrix-vector multiplication (SpMV) with CUDA based on matrix bandwidth/profile reduction techniques. Computational time required to access dense vector is decoupled from SpMV computation. By reducing the matrix profile, the time required to access dense vector is reduced by 17% (for SP) and 24% (for DP). Reduced matrix bandwidth enables column index information compression with shorter formats, resulting in a 17% (for SP) and 10% (for DP) execution time reduction for accessing matrix data under ELLPACK format. The overall speedup for SpMV is 16% and 12.6% for the whole matrix test suite. The optimization proposed in this paper can be combined with other SpMV optimizations such as register blocking.
引用
下载
收藏
页码:609 / 614
页数:6
相关论文
共 50 条
  • [1] Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform
    Shiming Xu
    Wei Xue
    Hai Xiang Lin
    The Journal of Supercomputing, 2013, 63 : 710 - 721
  • [2] Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform
    Xu, Shiming
    Xue, Wei
    Lin, Hai Xiang
    JOURNAL OF SUPERCOMPUTING, 2013, 63 (03): : 710 - 721
  • [3] A segment-based sparse matrix-vector multiplication on CUDA
    Feng, Xiaowen
    Jin, Hai
    Zheng, Ran
    Shao, Zhiyuan
    Zhu, Lei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (01): : 271 - 286
  • [4] Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs
    Monakov, Alexander
    Avetisyan, Arutyun
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, PROCEEDINGS, 2009, 5657 : 289 - 297
  • [5] CUDA-enabled Sparse Matrix-Vector Multiplication on GPUs using atomic operations
    Dang, Hoang-Vu
    Schmidt, Bertil
    PARALLEL COMPUTING, 2013, 39 (11) : 737 - 750
  • [6] DENSE MATRIX-VECTOR MULTIPLICATION ON THE CUDA ARCHITECTURE
    Fujimoto, Noriyuki
    PARALLEL PROCESSING LETTERS, 2008, 18 (04) : 511 - 530
  • [7] Shuffle Reduction Based Sparse Matrix-Vector Multiplication on Kepler GPU
    Yuan Tao
    Huang Zhi-Bin
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (10): : 99 - 106
  • [8] LightSpMV: Faster CUDA-Compatible Sparse Matrix-Vector Multiplication Using Compressed Sparse Rows
    Liu, Yongchao
    Schmidt, Bertil
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2018, 90 (01): : 69 - 86
  • [9] LightSpMV: Faster CUDA-Compatible Sparse Matrix-Vector Multiplication Using Compressed Sparse Rows
    Yongchao Liu
    Bertil Schmidt
    Journal of Signal Processing Systems, 2018, 90 : 69 - 86
  • [10] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):