Fabrication and characterization of dissolving microneedles for transdermal drug delivery of allopurinol

被引:0
|
作者
Chen, Jianmin [1 ,2 ]
Liu, Xinying [1 ]
Liu, Siwan [1 ]
He, Zemin [1 ]
Yu, Sijin [1 ]
Ruan, Zhipeng [1 ,2 ]
Jin, Nan [1 ,2 ]
机构
[1] Putian Univ, Sch Pharm & Med Technol, Putian 351100, Fujian, Peoples R China
[2] Fujian Prov Univ, Key Lab Pharmaceut Anal & Lab Med, Putian Univ, Putian, Peoples R China
基金
中国国家自然科学基金;
关键词
Transdermal drug delivery; dissolving microneedles; allopurinol; hyperuricemia; gout; SKIN; RELEASE; SYSTEM; ACID;
D O I
10.1080/03639045.2022.2027959
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Allopurinol (AP) is the first line drug in treating hyperuricemia and gout in clinical by oral drug delivery, which is associated with severe adverse effects and the hepatic first-pass effect. Herein, we first proposed AP encapsulated dissolving microneedles (DMNs) for transdermal drug delivery to realize the sustained drug release and avoid the hepatic first-pass effect, which will help to reduce the adverse effects and improve the bioavailability of AP. DMNs were fabricated by a suspension solution casting method with precisely controlled dose. They had sufficient mechanical strength to penetrate through the skin and resulted in the formation of hundreds of micropores in skin. The results of in vitro and ex vivo release experiments demonstrated that the release profile of DMNs was independent with the dose of AP, and they indeed had much higher drug delivery efficiency (DDE) than the equal amount of AP in solutions. In vivo DDE reached to 38.9% within 1 h, and the drug residual can be served as a drug reservoir for sustained drug release. The result of pharmacodynamic study further confirmed that the sustained release and the anti-hyperuricemia effect of DMNs encapsulating AP were achieved. Moreover, transepidermal water loss significantly increased to 49.50 +/- 3.82 g/m(2)center dot h after the application of DMNs and returned to normal levels (12.25 +/- 0.21 g/m(2)center dot h) after 8 h, indicating that the DMNs were well tolerated. These results suggest that transdermal drug delivery of AP by using DMNs is an efficient and safe alternative to currently available routes of administration.
引用
下载
收藏
页码:1578 / 1586
页数:9
相关论文
共 50 条
  • [1] Fabrication and Characterization of Dissolving Microneedles Containing Lecithin for Transdermal Drug Delivery
    Choi, Won-Ho
    Kim, Bumsang
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2021, 59 (03): : 429 - 434
  • [2] Fabrication and characterization of dissolving microneedles for transdermal delivery of hypocrellin A
    Zong, Qi
    Wang, Guozhen
    Zhao, Zijie
    Li, Wenzhuo
    Hou, Xiaonan
    Yao, Mengfei
    Tang, Duo
    Sheng, Chao
    Liu, Zijia
    Zheng, Yuchen
    Zhou, Zhixiang
    Zhang, Xiaofei
    Li, Xiao
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 95
  • [3] Dissolving microneedles for transdermal drug delivery
    Lee, Jeong W.
    Park, Jung-Hwan
    Prausnitz, Mark R.
    BIOMATERIALS, 2008, 29 (13) : 2113 - 2124
  • [4] Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery
    Zhuang, Jian
    Rao, Feng
    Wu, Daming
    Huang, Yao
    Xu, Hong
    Gao, Wangxin
    Zhang, Jiarong
    Sun, Jingyao
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2020, 157 : 66 - 73
  • [5] Fabrication of Tip-Dissolving Microneedles for Transdermal Drug Delivery of Meloxicam
    Jianmin Chen
    Weiyue Huang
    Ziyao Huang
    Shiqi Liu
    Yaling Ye
    Qinglian Li
    Meiping Huang
    AAPS PharmSciTech, 2018, 19 : 1141 - 1151
  • [6] Fabrication of Tip-Dissolving Microneedles for Transdermal Drug Delivery of Meloxicam
    Chen, Jianmin
    Huang, Weiyue
    Huang, Ziyao
    Liu, Shiqi
    Ye, Yaling
    Li, Qinglian
    Huang, Meiping
    AAPS PHARMSCITECH, 2018, 19 (03): : 1141 - 1151
  • [7] Panorama of dissolving microneedles for transdermal drug delivery
    Dalvi, Mayuri
    Kharat, Pratik
    Thakor, Pradip
    Bhavana, Valamla
    Singh, Shashi Bala
    Mehra, Neelesh Kumar
    LIFE SCIENCES, 2021, 284
  • [8] Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson’s Disease
    Daisuke Ando
    Aisa Ozawa
    Motoharu Sakaue
    Eiichi Yamamoto
    Tamaki Miyazaki
    Yoji Sato
    Tatsuo Koide
    Ken-ichi Izutsu
    Pharmaceutical Research, 2024, 41 : 153 - 163
  • [9] Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson's Disease
    Ando, Daisuke
    Ozawa, Aisa
    Sakaue, Motoharu
    Yamamoto, Eiichi
    Miyazaki, Tamaki
    Sato, Yoji
    Koide, Tatsuo
    Izutsu, Ken-ichi
    PHARMACEUTICAL RESEARCH, 2024, 41 (01) : 153 - 163
  • [10] Dissolving Microneedles for Transdermal Drug Delivery System
    Bai, Chenlin
    Huo, Cheng
    Zhang, Peiyu
    2020 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING, 2020, 1626