Generation and molecular characterization of pancreatic cancer patient-derived xenografts reveals their heterologous nature

被引:45
|
作者
Jung, Jaeyun [1 ]
Lee, Hyun Cue [3 ]
Seol, Hyang Sook [4 ]
Choi, Yeon Sook [4 ]
Kim, Eunji [3 ,5 ]
Lee, Eun Ji [1 ]
Rhee, Je-Keun [6 ]
Singh, Shree Ram [7 ]
Jun, Eun Sung [1 ]
Han, Buhm [3 ]
Hong, Seung Mo [8 ]
Kim, Song Cheol [9 ]
Chang, Suhwan [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Dept Biomed Sci, Seoul, South Korea
[2] Univ Ulsan, Coll Med, Dept Physiol, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Dept Convergence Med, Seoul, South Korea
[4] Asan Med Ctr, Asan Inst Life Sci, Seoul, South Korea
[5] Seoul Natl Univ, Dept Chem, Seoul, South Korea
[6] Catholic Univ Korea, Coll Med, Dept Med Informat, Seoul, South Korea
[7] NCI, Mouse Canc Genet Program, Ctr Canc Res, Frederick, MD 21701 USA
[8] Asan Med Ctr, Dept Pathol, Seoul, South Korea
[9] Asan Med Ctr, Dept Surg, Seoul, South Korea
关键词
pancreatic cancer; patient-derived xenograft; single nucleotide polymorphism; cancer panel; heterogeneity; K-RAS; ESTABLISHMENT; MUTATIONS; GENES; MODEL;
D O I
10.18632/oncotarget.11530
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is the most challenging type of cancer to treat, with a 5-year survival rate of <10%. Furthermore, because of the large portion of the inoperable cases, it is difficult to obtain specimens to study the biology of the tumors. Therefore, a patient-derived xenograft (PDX) model is an attractive option for preserving and expanding these tumors for translational research. Here we report the generation and characterization of 20 PDX models of PDAC. The success rate of the initial graft was 74% and most tumors were re-transplantable. Histological analysis of the PDXs and primary tumors revealed a conserved expression pattern of p53 and SMAD4; an exome single nucleotide polymorphism (SNP) array and Comprehensive Cancer Panel showed that PDXs retained over 94% of cancer-associated variants. In addition, Polyphen2 and the Sorting Intolerant from Tolerant (SIFT) prediction identified 623 variants among the functional SNPs, highlighting the heterologous nature of pancreatic PDXs; an analysis of 409 tumor suppressor genes and oncogenes in Comprehensive Cancer Panel revealed heterologous cancer gene mutation profiles for each PDX-primary tumor pair. Altogether, we expect these PDX models are a promising platform for screening novel therapeutic agents and diagnostic markers for the detection and eradication of PDAC.
引用
收藏
页码:62533 / 62546
页数:14
相关论文
共 50 条
  • [1] A collection of patient-derived pancreatic adenocarcinoma xenografts: pharmacological and molecular characterization
    Beckers, T.
    Maier, A.
    Schueler, J.
    Giesemann, T.
    Ackermann, A.
    Hopt, U.
    Keck, T.
    Kohler, I.
    Fiebig, H. H.
    Kuesters, S.
    EJC SUPPLEMENTS, 2010, 8 (07): : 89 - 89
  • [2] Molecular characterization of a panel of patient-derived breast cancer xenografts
    Giesemann, Torsten
    Krumbach, Rebekka
    Schiller, Julia
    Vuaroqueaux, Vincent
    Hofmann, Michael
    Liu, Ningshu
    Haegebarth, Andrea
    Beckers, Thomas
    Fiebig, Heinz-Herbert
    CANCER RESEARCH, 2010, 70
  • [3] Next-generation characterization of patient-derived xenografts
    Nakashima, Jonathan
    Do, Long
    Andrews, Warren
    Chien, Yuan-Hung
    Sperry, Jantzen
    Carapia, Bianca
    Yan, Deborah
    Rivera, Giovanni
    Federman, Noah
    Singh, Arun
    Eilber, Fritz C.
    Datnow, Brian
    CANCER RESEARCH, 2022, 82 (12)
  • [4] Molecular profiling of patient-derived breast cancer xenografts
    Fabien Reyal
    Charlotte Guyader
    Charles Decraene
    Carlo Lucchesi
    Nathalie Auger
    Franck Assayag
    Ludmilla De Plater
    David Gentien
    Marie-France Poupon
    Paul Cottu
    Patricia De Cremoux
    Pierre Gestraud
    Anne Vincent-Salomon
    Jean-Jacques Fontaine
    Sergio Roman-Roman
    Olivier Delattre
    Didier Decaudin
    Elisabetta Marangoni
    Breast Cancer Research, 14
  • [5] Genomic characterization of endometrial cancer patient-derived xenografts reveals intratumor heterogeneity.
    Kondrashova, Olga
    Bonazzi, Vanessa F.
    Smith, Deborah
    Nones, Katia
    Sengal, Asmerom
    Ju, Robert
    Packer, Leisl M.
    Koufariotis, Lambros T.
    Kazakoff, Stephen H.
    Davidson, Aimee L.
    Ramarao-Milne, Priya
    Lakis, Vanessa
    Newell, Felicity
    Rogers, Rebecca
    Davies, Claire
    Chetty, Naven
    Perrin, Lewis
    Pearson, John
    Patch, Ann-Marie
    Garrett, Andrea
    Waddell, Nicola
    Pollock, Pamela
    Nicklin, James
    CLINICAL CANCER RESEARCH, 2021, 27 (03)
  • [6] Molecular profiling of patient-derived breast cancer xenografts
    Reyal, Fabien
    Guyader, Charlotte
    Decraene, Charles
    Lucchesi, Carlo
    Auger, Nathalie
    Assayag, Franck
    De Plater, Ludmilla
    Gentien, David
    Poupon, Marie-France
    Cottu, Paul
    De Cremoux, Patricia
    Gestraud, Pierre
    Vincent-Salomon, Anne
    Fontaine, Jean-Jacques
    Roman-Roman, Sergio
    Delattre, Olivier
    Decaudin, Didier
    Marangoni, Elisabetta
    BREAST CANCER RESEARCH, 2012, 14 (01):
  • [7] Generation and characterization of patient-derived xenografts from patients with osteosarcoma
    Chen, Fei
    Zhang, Zhenzhen
    Shen, Rongkai
    Chen, Meng
    Li, Guoping
    Zhu, Xia
    TISSUE & CELL, 2022, 79
  • [8] Proteomic Characterization of Head and Neck Cancer Patient-Derived Xenografts
    Li, Hua
    Wheeler, Sarah
    Park, Yongseok
    Ju, Zhenlin
    Thomas, Sufi M.
    Fichera, Michele
    Egloff, Ann M.
    Lui, Vivian W.
    Duvvuri, Umamaheswar
    Bauman, Julie E.
    Mills, Gordon B.
    Grandis, Jennifer R.
    MOLECULAR CANCER RESEARCH, 2016, 14 (03) : 278 - 286
  • [9] Oropharyngeal cancer patient-derived xenografts: Characterization and radiosensitivity.
    Lilja-Fischer, J.
    Ulhoi, B.
    Alsner, J.
    Lassen, P.
    Nielsen, V.
    Overgaard, J.
    RADIOTHERAPY AND ONCOLOGY, 2017, 122 : 49 - 50
  • [10] Generation and characterization of a collection of patient-derived xenografts (PDX) models for translational lung cancer research
    Molina-Pinelo, S.
    Melendez, R.
    Suarez, R.
    Garcia, L.
    Ojeda, L.
    Yague, P.
    Paz-Ares, L.
    Ferrer, I.
    ANNALS OF ONCOLOGY, 2016, 27