Dark discrete breather modes in a monoaxial chiral helimagnet with easy-plane anisotropy

被引:9
|
作者
Bostrem, I. G. [1 ]
Ekomasov, E. G. [2 ,3 ]
Kishine, J. [4 ,5 ]
Ovchinnikov, A. S. [1 ,6 ]
Sinitsyn, V. E. [1 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620002, Russia
[2] Bashkir State Univ, Inst Phys & Technol, Ufa 450076, Russia
[3] Tyumen State Univ, Inst Phys & Technol, Tyumen 625003, Russia
[4] Open Univ Japan, Div Nat & Environm Sci, Chiba 2618586, Japan
[5] Inst Mol Sci, 38 Nishigo Naka, Okazaki, Aichi 4448585, Japan
[6] Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620219, Russia
基金
俄罗斯基础研究基金会;
关键词
INTRINSIC LOCALIZED MODES; EXTERNAL MAGNETIC-FIELD; LATTICE SOLUTIONS; VIBRATIONAL-MODES; SPIN-WAVES; EXCITATIONS; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevB.104.214420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonlinearity and discreteness are two pivotal factors for an emergence of discrete breather excitations in various media. We argue that these requirements are met in the forced ferromagnetic phase of the monoaxial chiral helimagnet CrNb3S6 due to the specific domain structure of the compound. The stationary, time-periodic breather modes appear as the discrete breather lattice solutions whose period mismatches with a system size. Thanks to easy-plane single-ion anisotropy intrinsic to CrNb3S6, these modes are of the dark type with frequencies lying within the linear spin-wave band, close to its bottom edge. They represent cnoidal states of magnetization, similar to the well-known soliton lattice ground state, with differing but limited number of embedded 2 pi kinks. The linear stability of these dark breather modes is verified by means of Floquet analysis. Their energy, which is controlled by two parameters, namely, the breather lattice period and amplitude, falls off linearly with a growth of the kink number. These results may pave a path to design spintronic resonators on the base of chiral helimagnets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Discrete magnetic breathers in monoaxial chiral helimagnet
    Bostrem, I. G.
    Sinitsyn, Vl. E.
    Ovchinnikov, A. S.
    Ekomasov, E. G.
    Kishine, J.
    AIP ADVANCES, 2021, 11 (01)
  • [2] Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy
    Borisov, A. B.
    Kishine, Jun-ichiro
    Bostrem, I. G.
    Ovchinnikov, A. S.
    PHYSICAL REVIEW B, 2009, 79 (13)
  • [3] Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy
    Lin, Shi-Zeng
    Saxena, Avadh
    Batista, Cristian D.
    PHYSICAL REVIEW B, 2015, 91 (22)
  • [4] Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy
    Khalack, JM
    Zolotaryuk, Y
    Christiansen, PL
    CHAOS, 2003, 13 (02) : 683 - 692
  • [5] Discrete Magnetic Breathers and Their Stability in a Finite-Size Monoaxial Chiral Helimagnet
    Bostrem, I. G.
    Sinitsyn, Vl E.
    Mokronosov, M., V
    Ovchinnikov, A. S.
    Kishine, J.
    Ekomasov, E. G.
    Fakhretdinov, M., I
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)
  • [6] "Polymerization" of Bimerons in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy
    Mukai, Natsuki
    Leonov, Andrey O.
    NANOMATERIALS, 2024, 14 (06)
  • [7] Meron configurations in easy-plane chiral magnets
    Bachmann D.
    Lianeris M.
    Komineas S.
    Physical Review B, 2023, 108 (01)
  • [8] QUANTUM MAGNETIZATION JUMPS IN MAGNETS WITH EASY-PLANE ANISOTROPY
    ROZENFELD, EV
    JETP LETTERS, 1976, 24 (02) : 50 - 53
  • [9] Skyrmions in thin films with easy-plane magnetocrystalline anisotropy
    Vousden, Mark
    Albert, Maximilian
    Beg, Marijan
    Bisotti, Marc-Antonio
    Carey, Rebecca
    Chernyshenko, Dmitri
    Cortes-Ortuno, David
    Wang, Weiwei
    Hovorka, Ondrej
    Marrows, Christopher H.
    Fangohr, Hans
    APPLIED PHYSICS LETTERS, 2016, 108 (13)
  • [10] NORMAL-MODES OF VORTICES IN EASY-PLANE FERROMAGNETS
    WYSIN, GM
    VOLKEL, AR
    PHYSICAL REVIEW B, 1995, 52 (10): : 7412 - 7427