Nanocrystalline FeAl intermetallics obtained in mechanically alloyed Fe50Al40Ni10 powder

被引:18
|
作者
Hadef, F. [1 ]
Otmani, A. [1 ]
Djekoun, A. [2 ]
Greneche, J. M. [3 ]
机构
[1] Univ Skikda, Lab Rech Physicochim Surfaces & Interfaces, Skikda, Algeria
[2] Univ Annaba, Lab Magnetisme & Spect Solide, Annaba, Algeria
[3] Univ Maine, Lab Phys Etat Condense, CNRS, UMR 6087, F-72085 Le Mans, France
关键词
Nanostructured materials; Mechanical alloying; Order-disorder effects; X-ray diffraction; Fe-57 Mossbauer spectroscopy; TO-FERROMAGNETIC TRANSITION; MAGNETIC-PROPERTIES; STRUCTURAL-CHARACTERIZATION; PLASTIC-DEFORMATION; POINT-DEFECTS; AL ALLOYS; X-RAY; MOSSBAUER; IRON; NI;
D O I
10.1016/j.spmi.2011.04.003
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
B2-Fe47Al53 intermetallics has been produced by mechanical alloying in a planetary ball mill, using elemental Fe, Al and Ni powder mixture. The microstructural and magnetic properties of the mechanically alloyed Fe50Al40Ni10 powdered samples were investigated by X-ray diffraction and Fe-57 Mossbauer spectrometry at 300 and 77 K. As resulted from the X-ray diffraction studies, the ordered B2 structure was formed in the Fe50Al40Ni10 powder, together with the bcc alpha(i)-Fe(Al, Ni) (i = 1,2) solid solutions. Further milling led to a partial disordering of B2-Fe47Al53; it has undergone an order-disorder transition which is characterized by an expansion of the volume Delta a(0) (lattice disorder) and a magnetic transition from the paramagnetic to ferromagnetic state which is characterized by strong ferromagnetic interactions in the alloy. The nanocrystalline bcc alpha(i)-Fe(Al, Ni) solid solution was ferromagnetic with a mean crystallite size of 6 nm. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:654 / 665
页数:12
相关论文
共 50 条
  • [1] Structural evolution of mechanically alloyed nanocrystalline Fe25Al50Ni25 intermetallics
    Cao, Qizhi
    Zhang, Jing
    Li, JianYing
    [J]. NEW MATERIALS AND PROCESSES, PTS 1-3, 2012, 476-478 : 1476 - 1479
  • [2] Structural evolution of mechanically alloyed nanocrystalline FeAl intermetallics
    Shi, Hongwei
    Guo, Debo
    Ouyang, Yifang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 455 (1-2) : 207 - 209
  • [3] Structural evolution of mechanically alloyed nanocrystalline Al70Fe25Ni5 intermetallics
    Jing, Zhang
    Cao, QiZhi
    Li, ZhengLiang
    [J]. APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 : 1751 - 1754
  • [4] Morphology, structural and microstructural characterizations of mechanically alloyed Fe50Co40Ni10 powder mixture
    T. Gouasmia
    N. Loudjani
    M. Boulkra
    M. Benchiheub
    K. Belakroum
    M. Bououdina
    [J]. Applied Physics A, 2022, 128
  • [5] Morphology, structural and microstructural characterizations of mechanically alloyed Fe50Co40Ni10 powder mixture
    Gouasmia, T.
    Loudjani, N.
    Boulkra, M.
    Benchiheub, M.
    Belakroum, K.
    Bououdina, M.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (10):
  • [6] Morphology, structural and microstructural characterizations of mechanically alloyed Fe50Co40Ni10 powder mixture
    Gouasmia, T.
    Loudjani, N.
    Boulkra, M.
    Benchiheub, M.
    Belakroum, K.
    Bououdina, M.
    [J]. Applied Physics A: Materials Science and Processing, 2022, 128 (10):
  • [7] Structural features of mechanically alloyed Al-10Fe-4Ni powder
    Wang, Erde
    Wang, Yongqian
    Liang, Guoxian
    Song, Guangsheng
    Liu, Xiuhua
    [J]. Fenmo Yejin Jishu/Powder Metallurgy Technology, 1993, 11 (03): : 165 - 170
  • [8] Mossbauer effect study of fine atomic structure of Fe50Al40Ni10 powders
    Hadef, F.
    Otmani, A.
    Djekoun, A.
    Greneche, J. M.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2012, 51 (06) : 952 - 958
  • [9] Change in structure of mechanically alloyed Fe-50% Al powder
    Hashii, M.
    [J]. Materials Science Forum, 1999, 312 : 139 - 144
  • [10] Structural and microstructural study of nanostructured Fe50Al40Ni10 powders produced by mechanical alloying
    Hadef, F.
    Otmani, A.
    Djekoun, A.
    Greneche, J. M.
    [J]. MATERIALS CHARACTERIZATION, 2011, 62 (08) : 751 - 759