Spin-Glass State above Room Temperature in a Layered Nickelate Lan+1NinO3n+1

被引:2
|
作者
Song, Chuangye [1 ,2 ]
Li, Xuanyi [2 ,3 ]
Meng, Fanqi [2 ]
Zhang, Qinghua [2 ]
Ma, Ji [4 ]
Guo, Tengyu [1 ]
Zhang, Yuelin [5 ]
Zhou, Song [2 ,3 ]
Gu, Lin [1 ,2 ]
Meng, Sheng [1 ,2 ,3 ]
Wu, Kehui [1 ,2 ,3 ]
机构
[1] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[5] Beihang Univ, Sch Integrated Circuit Sci & Engn, MIIT Key Lab Spintron, Beijing 100191, Peoples R China
来源
ADVANCED ELECTRONIC MATERIALS | 2022年 / 8卷 / 07期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
charge transfer; layered nickelate; room temperature spin glass; CHARGE-TRANSFER; PHASES;
D O I
10.1002/aelm.202101136
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Oxide interfaces provide a fertile ground for new forms of magnetic textures that arise from different symmetry constraints, proximity effects, and charge transfer. Here, a room-temperature spin glass state stabilized in heterostructures of the ferromagnetic metallic oxide La2/3Sr1/3MnO3 (LSMO) and the layered Lan+1NinO3n+1 (L-LNO) is reported. Electron energy loss spectra and depth-profile X-ray photoelectron spectroscopy reveal the interfacial electron transfer from Mn3+ to localized Ni3+ states. Density functional theory calculations indicate that charge transfer drives the enhancement of ferromagnetic exchange interaction in the nickelate, leading to the formation of local magnetic order. The room temperature spin-glass state in this artificially engineered LSMO/L-LNO bilayer structure affords opportunities for designing emergent topological spin textures and spintronic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Layered perovskite oxides Lan+1NinO3n+1 (n=1, 2, and 3) for detecting ammonia under high temperature
    Li, Yuehua
    Li, Shaoxian
    Meng, Weiwei
    Dai, Lei
    Wang, Ling
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 344
  • [2] Thermochemical characteristics of Lan+1NinO3n+1 oxides
    Bannikov, D. O.
    Safronov, A. P.
    Cherepanov, V. A.
    THERMOCHIMICA ACTA, 2006, 451 (1-2) : 22 - 26
  • [3] Active Oxygen Species in Lan+1NinO3n+1 Layered Perovskites for Catalytic Oxidation of Toluene and Methane
    Meng, Qingjie
    Wang, Wanglong
    Weng, Xiaole
    Liu, Yue
    Wang, Haiqiang
    Wu, Zhongbiao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (06): : 3259 - 3266
  • [5] STUDIES ON SYNTHESIS, CHARACTERIZATION AND CATALYTIC PROPERTIES OF LAN+1NINO3N+1 MIXED OXIDES
    CHENG, TX
    YANG, XG
    WU, Y
    ACTA CHIMICA SINICA, 1995, 53 (08) : 781 - 788
  • [6] XANES study on Ruddlesden-Popper phase, Lan+1NinO3n+1 (n=1,2 and ∞)
    Park, JC
    Kim, DK
    Byeon, SH
    Kim, D
    JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 : 704 - 706
  • [7] Epitaxial growth of mixed conducting layered Ruddlesden-Popper Lan+1NinO3n+1 (n=1, 2 and 3) phases by pulsed laser deposition
    Wu, Kuan-Ting
    Soh, Yeong-Ah
    Skinner, Stephen J.
    MATERIALS RESEARCH BULLETIN, 2013, 48 (10) : 3783 - 3789
  • [8] EVOLUTION OF 3-DIMENSIONAL CHARACTER ACROSS THE LAN+1NINO3N+1 HOMOLOGOUS SERIES WITH INCREASE IN N
    RAM, RAM
    GANAPATHI, L
    GANGULY, P
    RAO, CNR
    JOURNAL OF SOLID STATE CHEMISTRY, 1986, 63 (02) : 139 - 147
  • [9] Direct syntheses of Lan+1NinO3n+1 phases (n = 1, 2, 3 and ∞) from nanosized co-crystallites
    Weng, Xiaole
    Boldrin, Paul
    Abrahams, Isaac
    Skinner, Stephen J.
    Kellici, Suela
    Darr, Jawwad A.
    JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (05) : 1123 - 1132
  • [10] Epitaxial growth and electronic structure of Ruddlesden-Popper nickelates (Lan+1NinO3n+1, n=1-5)
    Li, Z.
    Guo, W.
    Zhang, T. T.
    Song, J. H.
    Gao, T. Y.
    Gu, Z. B.
    Nie, Y. F.
    APL MATERIALS, 2020, 8 (09):