A Lipschitz Version of the λ-Lemma and a Characterization of Homoclinic and Heteroclinic Orbits

被引:0
|
作者
Pires, Leonardo [1 ]
La Guardia, Giuliano G. [1 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Matemat & Estatast, BR-84030900 Ponta Grossa, Parana, Brazil
关键词
Chaos; lambda-Lemma; Lipschitz function; Morse-Smale Lipschitz functions;
D O I
10.1007/s12346-021-00521-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider finite dimensional dynamical systems generated by a Lipschitz function. We prove a version of the Whitney's Extension Theorem on compact manifolds to obtain a version of the well-known lambda-lemma for Lipschitz functions. The notions of Lipschitz transversality and hyperbolicity are investigated in the finite dimensional framework with a norm between C-1-norm and C-0-norm. As an application, we study homoclinic and heteroclinic orbits obtaining, as a consequence, a stability result for Lipschitz Morse-Smale functions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Scarring by homoclinic and heteroclinic orbits
    Wisniacki, D. A.
    Vergini, E.
    Benito, R. M.
    Borondo, F.
    PHYSICAL REVIEW LETTERS, 2006, 97 (09)
  • [2] Homoclinic/heteroclinic recurrent orbits and horseshoe
    Dong, Xiujuan
    Li, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 420 : 150 - 179
  • [3] On homoclinic and heteroclinic orbits of Chen's system
    Li, Tiecheng
    Chen, Guoting
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 3035 - 3041
  • [4] Heteroclinic, Homoclinic and Closed Orbits in the Chen System
    Tigan, G.
    Llibre, J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [5] Homoclinic and heteroclinic orbits in a modified Lorenz system
    Li, Z
    Chen, GR
    Halang, WA
    INFORMATION SCIENCES, 2004, 165 (3-4) : 235 - 245
  • [6] Multitudinous potential homoclinic and heteroclinic orbits seized
    Wang, Haijun
    Pan, Jun
    Ke, Guiyao
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 1003 - 1016
  • [7] A new method to find homoclinic and heteroclinic orbits
    Bao, Jianghong
    Yang, Qigui
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) : 6526 - 6540
  • [8] Homoclinic and Heteroclinic Orbits in Climbing Cucumber Tendrils
    Jingjing Feng
    Wei Zhang
    Cheng Liu
    Ming Guo
    Chunqiu Zhang
    Scientific Reports, 9
  • [9] Homoclinic and Heteroclinic Orbits in Climbing Cucumber Tendrils
    Feng, Jingjing
    Zhang, Wei
    Liu, Cheng
    Guo, Ming
    Zhang, Chunqiu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] HOMOCLINIC AND HETEROCLINIC ORBITS FOR A SEMILINEAR PARABOLIC EQUATION
    Fila, Marek
    Yanagida, Eiji
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 561 - 579