Romberg integration:: A symbolic approach with mathematica

被引:0
|
作者
Yazici, A [1 ]
Ergenç, T
Altas, I
机构
[1] Atilim Univ, Comp Engn Dept, Ankara, Turkey
[2] Middle E Tech Univ, Dept Math, Ankara, Turkey
[3] Sch Informat Studies, Wagga Wagga, NSW, Australia
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the underlying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 50 条
  • [1] 2d polynomial interpolation: A symbolic approach with mathematica
    Yazici, A
    Altas, I
    Ergenc, T
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 3, 2005, 3482 : 463 - 471
  • [2] COMMENTS ON THE ROMBERG INTEGRATION
    SCHNEIDER, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (05): : T419 - T420
  • [3] Symbolic maximum likelihood estimation with Mathematica
    Rose, C
    Smith, MD
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 : 229 - 240
  • [4] SYMBOLIC CIRCUIT ANALYSIS USING MATHEMATICA
    TENG, JF
    FIDLER, JK
    SUN, YC
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1994, 31 (04) : 324 - 333
  • [5] Symbolic analysis of economical models with mathematica
    Galvez, A.
    Iglesias, A.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 414 - 421
  • [6] SYMBOLIC COMPUTATION THROUGH MATHEMATICA AND MOODLE
    Miralles Canals, Juan Jose
    Canas Carreton, Miguel
    Vergara Pla, Gonzalo
    [J]. EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2016, : 6701 - 6711
  • [7] Symbolic implementation of the generalized transform in mathematica
    Barbargires, CA
    Iakovidis, CE
    Driva, HN
    Karybakas, CA
    [J]. MELECON '98 - 9TH MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 1998, : 143 - 147
  • [8] Symbolic polynomial interpolation using Mathematica
    Yazici, A
    Altas, I
    Ergenc, T
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 364 - 369
  • [9] A SHORT NOTE ON ROMBERG INTEGRATION
    JETTER, K
    [J]. NUMERISCHE MATHEMATIK, 1984, 45 (02) : 275 - 281
  • [10] A SHORT PROOF FOR ROMBERG INTEGRATION
    VONPETERSDORFF, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (08): : 783 - 785