Resource Allocation for Time-triggered Federated Learning over Wireless Networks

被引:1
|
作者
Zhou, Xiaokang [1 ,2 ]
Deng, Yansha [2 ]
Xia, Huiyun [1 ]
Wu, Shaochuan [1 ]
Bennis, Mehdi [3 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
[2] Kings Coll London, Dept Engn, London, England
[3] Univ Oulu, Ctr Wireless Commun CWC, Oulu 90570, Finland
关键词
D O I
10.1109/ICC45855.2022.9838329
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The newly emerging federated learning (FL) framework offers a new way to train machine learning models in a privacy-preserving manner. However, traditional FL algorithms are based on an event-triggered aggregation, which suffers from stragglers and communication overhead issues. To address these issues, in this paper, we present a time-triggered FL algorithm (TT-Fed) over wireless networks, which is a generalization of classic synchronous and asynchronous FL. Taking the resource-constrained and unreliable nature of wireless networks into account, we jointly consider the user selection and bandwidth optimization problem to minimize the FL training loss. The optimization problem is decomposed into tractable sub-problems with respect to each global aggregation round, and finally solved by our proposed greedy search algorithm. Simulation results show that compared to asynchronous FL (FedAsync) and FL with asynchronous tiers (FedAT) benchmarks, our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively, under highly imbalanced and non-IID data, while substantially reducing the communication overhead.
引用
下载
收藏
页码:2810 / 2815
页数:6
相关论文
共 50 条
  • [1] Time-Triggered Federated Learning Over Wireless Networks
    Zhou, Xiaokang
    Deng, Yansha
    Xia, Huiyun
    Wu, Shaochuan
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 11066 - 11079
  • [2] Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Minh N. H.
    Hong, Choong Seon
    Bao, Wei
    Zomaya, Albert Y.
    Gramoli, Vincent
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (01) : 398 - 409
  • [3] A Reliable Job Allocation Scheduler for Time-Triggered Wireless Networks
    Baniabdelghany, Haytham
    Obermaisser, Roman
    Khalifeh, Ala'
    2021 IEEE 24TH INTERNATIONAL SYMPOSIUM ON REAL-TIME DISTRIBUTED COMPUTING (ISORC 2021), 2021, : 1 - 10
  • [4] Joint User Scheduling and Resource Allocation for Federated Learning over Wireless Networks
    Yin, Benshun
    Chen, Zhiyong
    Tao, Meixia
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [5] Federated Learning Based Resource Allocation for Wireless Communication Networks
    Behmandpoor, Pourya
    Patrinos, Panagiotis
    Moonen, Marc
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1656 - 1660
  • [6] Resource Allocation for Multi-Task Federated Learning Algorithm over Wireless Communication Networks
    Cao, Binghao
    Chen, Ming
    Ben, Yanglin
    Yang, Zhaohui
    Hu, Yuntao
    Huang, Chongwen
    Cang, Yihan
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 590 - 595
  • [7] Resource allocation in wireless networks with federated learning: Network adaptability and learning acceleration
    Lee, Hyun-Suk
    Lee, Da-Eun
    ICT EXPRESS, 2022, 8 (01): : 31 - 36
  • [8] FEDRESOURCE: Federated Learning Based Resource Allocation in Modern Wireless Networks
    Satheesh, P. G.
    Sasikala, T.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (09) : 1023 - 1030
  • [9] Device Selection and Resource Allocation for Layerwise Federated Learning in Wireless Networks
    Lee, Hyun-Suk
    IEEE SYSTEMS JOURNAL, 2022, 16 (04): : 6441 - 6444
  • [10] Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks
    Van-Dinh Nguyen
    Sharma, Shree Krishna
    Vu, Thang X.
    Chatzinotas, Symeon
    Ottersten, Bjorn
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) : 3394 - 3409