A direct product decomposition of QMV algebras

被引:0
|
作者
Lu Xian [1 ]
Shang Yun [1 ]
Lu RuQian [1 ,2 ]
机构
[1] Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
QMV algebra; commutativity; idempotent; decomposition theorem; QUANTUM MV-ALGEBRAS;
D O I
10.1007/s11425-011-4310-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices). In detail, for an idempotent element of a given QMV algebra, if it commutes with every element of the QMV algebra, it can induce a direct product decomposition of the QMV algebra. At the same time, we introduce the commutant C(S) of a set S in a QMV algebra, and prove that when S consists of idempotent elements, C(S) is a subalgebra of the QMV algebra. This also generalizes the cases of orthomodular lattices.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条