Computing the ball size of frequency permutations under Chebyshev distance

被引:5
|
作者
Shieh, Min-Zheng [1 ]
Tsai, Shi-Chun [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
关键词
Permanent; Permutation; Coding theory; Sphere-packing; MODULATION; ARRAYS;
D O I
10.1016/j.laa.2012.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S-n(lambda) be the set of all permutations over the multiset { [GRAPHICS] , .... , [GRAPHICS] } where n = m lambda. A frequency permutation array (FPA) of minimum distance d is a subset of S-n(lambda) which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert-Varshamov bound and the sphere-packing bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Here it is equivalent to computing the permanent of a special type of matrix, which generalizes the Toepliz matrix in some sense. Both methods extend previous known results. The first one runs in O (((2d lambda)(d lambda))(2.376) log n) time and O(((2d lambda)(d lambda))(2)) space. The second one runs in O (((2d lambda)(d lambda)) ((d lambda+lambda)(lambda))n/lambda) time and O (((2d lambda)(d lambda))) space. For small constants lambda and d, both are efficient in time and use constant storage space. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 50 条
  • [1] Computing the Ball Size of Frequency Permutations under Chebyshev Distance
    Shieh, Min-Zheng
    Tsai, Shi-Chun
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [2] Decoding Frequency Permutation Arrays Under Chebyshev Distance
    Shieh, Min-Zheng
    Tsai, Shi-Chun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (11) : 5730 - 5737
  • [3] Lower bounds on the size of spheres of permutations under the Chebychev distance
    Klove, Torleiv
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 59 (1-3) : 183 - 191
  • [4] Lower bounds on the size of spheres of permutations under the Chebychev distance
    Torleiv Kløve
    Designs, Codes and Cryptography, 2011, 59 : 183 - 191
  • [5] Permutation Arrays Under the Chebyshev Distance
    Klove, Torleiv
    Lin, Te-Tsung
    Tsai, Shi-Chun
    Tzeng, Wen-Guey
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2611 - 2617
  • [6] Gaussian distribution resampling via Chebyshev distance for food computing
    Li, Tianle
    Zuo, Enguang
    Chen, Chen
    Chen, Cheng
    Zhong, Jie
    Yan, Junyi
    Lv, Xiaoyi
    APPLIED SOFT COMPUTING, 2024, 150
  • [7] Concatenated Permutation Codes under Chebyshev Distance
    Kawasumi, Motohiko
    Kasai, Kenta
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (03) : 616 - 632
  • [8] Inverse matroid optimization problem under Chebyshev distance
    Tayyebi, Javad
    Bigdeli, Hamid
    2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 59 - 61
  • [9] Improved bounds for permutation arrays under Chebyshev distance
    Bereg, Sergey
    Haghpanah, Mohammadreza
    Malouf, Brian
    Sudborough, I. Hal
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (04) : 1023 - 1039
  • [10] Improved bounds for permutation arrays under Chebyshev distance
    Sergey Bereg
    Mohammadreza Haghpanah
    Brian Malouf
    I. Hal Sudborough
    Designs, Codes and Cryptography, 2024, 92 : 1023 - 1039