NMF-based Method of Text Classification

被引:1
|
作者
Sun, Fuzhen [1 ]
Zhang, Kun [2 ]
机构
[1] Shandong Univ Technol, Coll Comp Sci & Tehnol, Zibo, Shandong, Peoples R China
[2] Nanyang Normal Univ, Dept Comp & Informat Technol, Nanyang, Henan, Peoples R China
关键词
NMF; text classification; conceptual semantic space; SVD;
D O I
10.1109/WCICA.2010.5554018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper put. forward a text classification method based on NMF (Non-negative Matrix Factorization), NMF-based analysis of the conceptual semantic space and the text vector dimensionality reduction, better explain the concept of the semantic vector, better reflect the local features of the text, comparison of two methods of generating conceptual semantic space based on NMF and SVD (Singular Value Decomposition). Experimental results show that the local conceptual semantic space generated based on NMF can be a better text classification accuracy.
引用
收藏
页码:4312 / 4316
页数:5
相关论文
共 5 条
  • [1] DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
  • [2] 2-9
  • [3] Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons
    Kim, Jingu
    Park, Haesun
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 353 - 362
  • [4] Robust linear dimensionality reduction
    Koren, Y
    Carmel, L
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (04) : 459 - 470
  • [5] PAUL S, 2003, P SPIE 03, P321