Combinatorial topology and discrete Morse theory

被引:0
|
作者
Blanchet, C [1 ]
Gallais, E [1 ]
机构
[1] Univ Bretagne Sud, LMAM, Vannes, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:31 / 72
页数:42
相关论文
共 50 条
  • [1] On discrete Morse functions and combinatorial decompositions
    Chari, MK
    [J]. DISCRETE MATHEMATICS, 2000, 217 (1-3) : 101 - 113
  • [2] Topology of matching complexes of complete graphs via discrete Morse theory
    Mondal, Anupam
    Mukherjee, Sajal
    Saha, Kuldeep
    [J]. Discrete Mathematics and Theoretical Computer Science, 2024, 26 (03):
  • [3] A combinatorial method to compute explicit homology cycles using Discrete Morse Theory
    Kozlov D.N.
    [J]. Journal of Applied and Computational Topology, 2020, 4 (1) : 79 - 100
  • [4] Combinatorial realization of the Thom-Smale complex via discrete Morse theory
    Gallais, Etienne
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2010, 9 (02) : 229 - 252
  • [5] Discrete Morse Theory
    Knudson, Kevin P.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (08): : 763 - 768
  • [6] Applications of forman's discrete Morse theory to topology visualization and mesh compression
    Lewiner, T
    Lopes, H
    Tavares, G
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (05) : 499 - 508
  • [7] Combinatorial Novikov-Morse theory
    Forman, R
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2002, 13 (04) : 333 - 368
  • [8] Denoising with discrete Morse theory
    Mukherjee, Soham
    [J]. VISUAL COMPUTER, 2021, 37 (9-11): : 2883 - 2894
  • [9] Denoising with discrete Morse theory
    Soham Mukherjee
    [J]. The Visual Computer, 2021, 37 : 2883 - 2894
  • [10] Equivariant discrete Morse theory
    Freij, Ragnar
    [J]. DISCRETE MATHEMATICS, 2009, 309 (12) : 3821 - 3829