Approximate Bayesian computation reveals the factors that influence genetic diversity and population structure of foxsnakes

被引:17
|
作者
Row, J. R. [1 ]
Brooks, R. J. [2 ]
MacKinnon, C. A. [2 ]
Lawson, A. [2 ]
Crother, B. I. [3 ]
White, M. [3 ]
Lougheed, S. C. [1 ]
机构
[1] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada
[2] Univ Guelph, Dept Zool, Guelph, ON N1G 2W1, Canada
[3] SE Louisiana Univ, Dept Biol, Univ Biol, Hammond, LA 70402 USA
基金
加拿大自然科学与工程研究理事会;
关键词
assignment test; cytochrome b; glaciation; microsatellites; North America; phylogeography; population genetics; reptile; simulations; STATISTICAL EVALUATION; COLONIZATION HISTORY; MICROSATELLITE LOCI; PHYLOGEOGRAPHY; INFERENCE; MODEL; FLOW; PROGRAM; RANGE; BIOGEOGRAPHY;
D O I
10.1111/j.1420-9101.2011.02362.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Contemporary geographical range and patterns of genetic diversity within species reflect complex interactions between multiple factors acting across spatial and temporal scales, and it is notoriously difficult to disentangle causation. Here, we quantify patterns of genetic diversity and genetic population structure using mitochondrial DNA sequences (101 individuals, cytochrome b) and microsatellites (816 individuals, 12 loci) and use Approximate Bayesian computation methods to test competing models of the demographic history of eastern and western foxsnakes. Our analyses indicate that post-glacial colonization and past population declines, probably caused by the infilling of deciduous forest and cooler temperatures since the mid-Holocene, largely underpin large-scale genetic patterns for foxsnakes. At finer geographical scales, our results point to more recent anthropogenic habitat loss as having accentuated genetic population structure by causing further declines and fragmentation.
引用
收藏
页码:2364 / 2377
页数:14
相关论文
共 50 条
  • [1] Kernel approximate Bayesian computation in population genetic inferences
    Nakagome, Shigeki
    Fukumizu, Kenji
    Mano, Shuhei
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (06) : 667 - 678
  • [2] AABC: Approximate approximate Bayesian computation for inference in population-genetic models
    Buzbas, Erkan O.
    Rosenberg, Noah A.
    THEORETICAL POPULATION BIOLOGY, 2015, 99 : 31 - 42
  • [3] Approximate Bayesian computation in population genetics
    Beaumont, MA
    Zhang, WY
    Balding, DJ
    GENETICS, 2002, 162 (04) : 2025 - 2035
  • [4] Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei: Cyprinidae) with approximate Bayesian computation
    Yang, Jin-Quan
    Hsu, Kui-Ching
    Kuo, Po-Hsun
    Li, Lin-Lin
    Tang, Wen-Qiao
    Liu, Dong
    Lin, Hung-Du
    ENVIRONMENTAL BIOLOGY OF FISHES, 2018, 101 (05) : 829 - 841
  • [5] Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei: Cyprinidae) with approximate Bayesian computation
    Jin-Quan Yang
    Kui-Ching Hsu
    Po-Hsun Kuo
    Lin-Lin Li
    Wen-Qiao Tang
    Dong Liu
    Hung-Du Lin
    Environmental Biology of Fishes, 2018, 101 : 829 - 841
  • [6] Resequencing reveals population structure and genetic diversity in Tibetan sheep
    Sun, Lixia
    Yuan, Chao
    Guo, Tingting
    Zhang, Miaoshu
    Bai, Yaqin
    Lu, Zengkui
    Liu, Jianbin
    BMC GENOMICS, 2024, 25 (01):
  • [7] Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation
    Fang, Fang
    Chen, Jing
    Jiang, Liyun
    Qu, Yanhua
    Qiao, Gexia
    INTEGRATIVE ZOOLOGY, 2018, 13 (05): : 536 - 552
  • [8] Complex genetic admixture histories reconstructed with Approximate Bayesian Computation
    Fortes-Lima, Cesar A.
    Laurent, Romain
    Thouzeau, Valentin
    Toupance, Bruno
    Verdu, Paul
    MOLECULAR ECOLOGY RESOURCES, 2021, 21 (04) : 1098 - 1117
  • [9] Approximate Bayesian Computation applied to time series of population genetic data disentangles rapid genetic changes and demographic variations in a pathogen population
    Saubin, Meline
    Tellier, Aurelien
    Stoeckel, Solenn
    Andrieux, Axelle
    Halkett, Fabien
    MOLECULAR ECOLOGY, 2024, 33 (10)
  • [10] On the use of kernel approximate Bayesian computation to infer population history
    Nakagome, Shigeki
    GENES & GENETIC SYSTEMS, 2015, 90 (03) : 153 - 162