ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS

被引:0
|
作者
Argyros, Toannis K. [1 ]
Ren, Hongmin [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Hangzhou Polytech, Coll Informat & Engn, Hangzhou 311402, Zhejiang, Peoples R China
关键词
non-differentiable operator equation; the secant-like method; the ball of convergence; the omega-condition and centered-like omega-condition; affine invariant form; LOCAL CONVERGENCE;
D O I
10.4134/JKMS.j160629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we enlarge the ball of convergence of a uniparametric family of secant-like methods for solving non-differentiable operators equations in Banach spaces via using omega-condition and centered-like w-condition meantime as well as some fine techniques such as the affine invariant form. Numerical examples are also provided.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [1] On the ball of convergence of secant-like methods for non-differentiable operators
    Hernandez-Veron, M. A.
    Rubio, M. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 506 - 512
  • [2] ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE METHODS FOR EQUATIONS
    Argyros, I. K.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Hilout, S.
    Magrenan, A. A.
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 629 - 652
  • [3] Chebyshev-Secant-type Methods for Non-differentiable Operators
    Argyros, I. K.
    Ezquerro, J. A.
    Gutierrez, J. M.
    Hernandez, M. A.
    Hilout, S.
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 25 - 35
  • [4] Chebyshev-Secant-type Methods for Non-differentiable Operators
    I. K. Argyros
    J. A. Ezquerro
    J. M. Gutiérrez
    M. A. Hernández
    S. Hilout
    Milan Journal of Mathematics, 2013, 81 : 25 - 35
  • [5] Semi local convergence of secant-like methods for differentiable and nondifferentiable operator equations
    Ezquerro, J. A.
    Grau-Sanchez, M.
    Hernandez, M. A.
    Noguera, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (01) : 100 - 112
  • [6] An analysis of the semilocal convergence for secant-like methods
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Velasco, A. I.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 883 - 892
  • [7] An improved convergence theorem for a class of Secant-like methods
    Ren, Hongmin
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 472 - 481
  • [8] Semilocal convergence of Chebyshev Kurchatov type methods for non-differentiable operators
    Yadav, Sonia
    Singh, Sukhjit
    Badoni, R. P.
    Kumar, Ajay
    Singh, Mehakpreet
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 275 - 281
  • [9] A Semilocal Convergence for a Uniparametric Family of Efficient Secant-Like Methods
    Argyros, I. K.
    Gonzalez, D.
    Magrenan, A. A.
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [10] Convergence of Steffensen's method for non-differentiable operators
    Argyros, I. K.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 229 - 244