Statistical Mechanics of Two-Dimensional Shuffled Foams: Prediction of the Correlation between Geometry and Topology

被引:24
|
作者
Durand, Marc [1 ,2 ]
Kaefer, Jos [3 ]
Quilliet, Catherine [4 ,5 ]
Cox, Simon [6 ]
Talebi, Shirin Ataei [4 ,5 ]
Graner, Francois [7 ]
机构
[1] CNRS, UMR 7057, F-75205 Paris 13, France
[2] Univ Paris Diderot, F-75205 Paris 13, France
[3] Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France
[4] CNRS, UMR 5588, Lab Interdisciplinaire Phys, F-38402 St Martin Dheres, France
[5] Univ Grenoble 1, Lab Interdisciplinaire Phys, F-38402 St Martin Dheres, France
[6] Aberystwyth Univ, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
[7] UPMC, INSERM, CNRS, UMR 3215,U934,Inst Curie,Lab Genet & Biol Dev, F-75248 Paris 05, France
基金
英国工程与自然科学研究理事会;
关键词
GRAIN-GROWTH; 2; DIMENSIONS; EPIDERMIS; PATTERNS; METALS; CELLS; SOAP;
D O I
10.1103/PhysRevLett.107.168304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with root A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Delta n and Delta A are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits
    Durand, Marc
    Kraynik, Andrew M.
    van Swol, Frank
    Kaefer, Jos
    Quilliet, Catherine
    Cox, Simon
    Talebi, Shirin Ataei
    Graner, Francois
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [2] Statistical mechanics of two-dimensional foams
    Durand, M.
    EPL, 2010, 90 (06)
  • [3] Statistical mechanics of two-dimensional foams: Physical foundations of the model
    Durand, Marc
    EUROPEAN PHYSICAL JOURNAL E, 2015, 38 (12): : 1 - 16
  • [4] Statistical mechanics of two-dimensional foams: Physical foundations of the model
    Marc Durand
    The European Physical Journal E, 2015, 38
  • [5] Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization
    Tong, Mingming
    Cole, Katie
    Brito-Parada, Pablo R.
    Neethling, Stephen
    Cilliers, Jan J.
    LANGMUIR, 2017, 33 (15) : 3839 - 3846
  • [6] Jamming and geometry of two-dimensional foams
    Katgert, G.
    van Hecke, M.
    EPL, 2010, 92 (03)
  • [7] THE STATISTICAL MECHANICS OF TWO-DIMENSIONAL VESICLES
    Fisher, Michael E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1990, 4 (01) : 395 - 399
  • [8] Statistical mechanics of two-dimensional turbulence
    Jung, SW
    Morrison, PJ
    Swinney, HL
    JOURNAL OF FLUID MECHANICS, 2006, 554 : 433 - 456
  • [9] Statistical topology of perturbed two-dimensional lattices
    Leipold, Hannes
    Lazar, Emanuel A.
    Brakke, Kenneth A.
    Srolovitz, David J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [10] Statistical topology of the streamlines of a two-dimensional flow
    Kamb, Mason
    Byrum, Janie
    Huber, Greg
    Le Treut, Guillaume
    Mehta, Shalin
    Veytsman, Boris
    Yllanes, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)