Deep salient-Gaussian Fisher vector encoding of the spatio-temporal trajectory structures for person re-identification

被引:6
|
作者
Ksibi, Salma [1 ]
Mejdoub, Mahmoud [1 ]
Ben Amar, Chokri [1 ]
机构
[1] Univ Sfax, ENIS, REGIM Res Grp Intelligent Machines, Sfax, Tunisia
关键词
Person re-identification; Deep weighted encoding; Spatio-temporal trajectory structures; Deep spatio-temporal appearance descriptor; Deep CNN; DESCRIPTORS;
D O I
10.1007/s11042-018-6200-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a deep spatio-temporal appearance (DSTA) descriptor for person re-identification (re-ID). The proposed descriptor is based on the deep Fisher vector (FV) encoding of the trajectory spatio-temporal structures. These have the advantage of robustly handling the misalignment in the pedestrian tracklets. The deep encoding exploits the richness of the spatio-temporal structural information around the trajectories. This is achieved by hierarchically encoding the trajectory structures leveraging a larger tracklet neighborhood scale when moving from one layer to the next one. In order to eliminate the noisy background located around the pedestrian and model the uniqueness of its identity, the deep FV encoder is further enriched towards the deep Salient-Gaussian weighted FV (deepSGFV) encoder by integrating the pedestrian Gaussian and saliency templates in the encoding process, respectively. The proposed descriptor produces competitive accuracy with respect to state-of-the art methods and especially the deep CNN ones without necessitating either pre-training or data augmentation on four challenging pedestrian video datasets: PRID2011, i-LIDS-VID, Mars and LPW. The further combination of DSTA with deep CNN boosts the current state-of-the-art methods and demonstrates their complementarity.
引用
收藏
页码:1583 / 1611
页数:29
相关论文
共 45 条
  • [1] Deep salient-Gaussian Fisher vector encoding of the spatio-temporal trajectory structures for person re-identification
    Salma Ksibi
    Mahmoud Mejdoub
    Chokri Ben Amar
    Multimedia Tools and Applications, 2019, 78 : 1583 - 1611
  • [2] Extended Salient Fisher Vector encoding for Person Re-identification
    Ksibi, Salma
    Mejdoub, Mahmoud
    Ben Amar, Chokri
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 4344 - 4349
  • [3] Deep Spatio-temporal Network for Accurate Person Re-identification
    Quan Nguyen Hong
    Nghia Nguyen Tuan
    Trung Tran Quang
    Dung Nguyen Tien
    Cuong Vo Le
    2017 PROCEEDINGS OF KICS-IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATIONS WITH SAMSUNG LTE & 5G SPECIAL WORKSHOP, 2017, : 208 - 213
  • [4] A spatio-temporal covariance descriptor for person re-identification
    Hadjkacem, Bassem
    Ayedi, Walid
    Abid, Mohamed
    Snoussi, Hichem
    2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 618 - 622
  • [5] Person Re-identification Based on Deep Spatio-temporal Features and Transfer Learning
    Wang, Shengke
    Zhang, Cui
    Duan, Lianghua
    Wang, Lina
    Wu, Shan
    Chen, Long
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1660 - 1665
  • [6] Person Re-identification in Videos by Analyzing Spatio-temporal Tubes
    Sekh, Arif Ahmed
    Dogra, Debi Prosad
    Choi, Heeseung
    Chae, Seungho
    Kim, Ig-Jae
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 24537 - 24551
  • [7] Person Re-identification in Videos by Analyzing Spatio-temporal Tubes
    Arif Ahmed Sekh
    Debi Prosad Dogra
    Heeseung Choi
    Seungho Chae
    Ig-Jae Kim
    Multimedia Tools and Applications, 2020, 79 : 24537 - 24551
  • [8] Fusing Appearance and Spatio-Temporal Models for Person Re-Identification and Tracking
    Chen, Andrew Tzer-Yeu
    Biglari-Abhari, Morteza
    Wang, Kevin I-Kai
    JOURNAL OF IMAGING, 2020, 6 (05)
  • [9] Spatio-Temporal Representation Factorization for Video-based Person Re-Identification
    Aich, Abhishek
    Zheng, Meng
    Karanam, Srikrishna
    Chen, Terrence
    Roy-Chowdhury, Amit K.
    Wu, Ziyan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 152 - 162
  • [10] Progressive Unsupervised Person Re-Identification by Tracklet Association With Spatio-Temporal Regularization
    Xie, Qiaokang
    Zhou, Wengang
    Qi, Guo-Jun
    Tian, Qi
    Li, Houqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 597 - 610