GLOBAL INTEGRABILITY AND WEAK HARNACK ESTIMATES FOR ELLIPTIC PDES IN DIVERGENCE FORM

被引:7
|
作者
Sirakov, Boyan [1 ]
机构
[1] Pontiffcia Univ Catolica Rio de Janeiro, Dept Matemat, Rio De Janeiro, Brazil
来源
ANALYSIS & PDE | 2022年 / 15卷 / 01期
关键词
weak Harnack; Hopf lemma; global integrability; boundary estimates; elliptic PDE; divergence form; FULLY NONLINEAR EQUATIONS; A-PRIORI BOUNDS; SUPERHARMONIC FUNCTIONS; VISCOSITY SOLUTIONS; GROWTH;
D O I
10.2140/apde.2022.15.197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that two classically known properties of positive supersolutions of uniformly elliptic PDEs, the boundary point principle (Hopf lemma) and global integrability, can be quantified with respect to each other. We obtain an extension up to the boundary of the De Giorgi-Moser weak Harnack inequality, optimal with respect to the norms involved, for equations in divergence form.
引用
收藏
页码:197 / 216
页数:21
相关论文
共 50 条