Orbital evolution of circumbinary planets due to creep tides

被引:0
|
作者
Zoppetti, F. A. [1 ,2 ]
Folonier, H. [3 ]
Leiva, A. M. [1 ]
Gomes, G. O. [3 ]
机构
[1] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Astron Teor & Expt, Laprida 854,X5000BGR, Cordoba, Argentina
[3] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
planet-star interactions; planets and satellites; dynamical evolution and stability; celestial mechanics; CLOSE-IN SATELLITES; TIDAL EVOLUTION; KEPLER-47;
D O I
10.1051/0004-6361/202244318
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most confirmed circumbinary planets are located very close to their host binary where the tidal forces are expected to play an important role in their dynamics. Here we consider the orbital evolution of a circumbinary planet with arbitrary viscosity, subjected to tides due to both central stars. We adopt the creep tide theory and assume that the planet is the only extended body in the system and that its orbital evolution occurs after acquiring its pseudo-synchronous stationary rotational state. With this aim, we first performed a set of numerical integrations of the tidal equations, using a Kepler-38-type system as a working example. For this case we find that the amount of planetary tidal migration and also, curiously, its direction both depend on the viscosity. However, the effect of tides on its eccentricity and pericenter evolutions is simply a move toward pure gravitational secular solutions. Then we present a secular analytical model for the planetary semimajor axis and eccentricity evolution that reproduces very well the mean behavior of the full tidal equations and provides a simple criterion to determine the migration directions of the circumbinary planets. This criterion predicts that some of the confirmed circumbinary planets are tidally migrating inward, but others are migrating outward. However, the typical timescales are predicted to be very long, and not much orbital tidal evolution is expected to have taken place in these systems. Finally, we revisit the orbital evolution of a circumbinary planet in the framework of the constant time lag model. We find that the results predicted with this formalism are identical to those obtained with creep theory in the limit of gaseous bodies.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Identifying Transiting Circumbinary Planets
    Ofir, Aviv
    TRANSITING PLANETS, PROCEEDINGS, 2009, (253): : 378 - 381
  • [32] Migration of planets in circumbinary discs
    Thun, Daniel
    Kley, Wilhelm
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [33] A self-consistent weak friction model for the tidal evolution of circumbinary planets
    Zoppetti, F. A.
    Beauge, C.
    Leiva, A. M.
    Folonier, H.
    ASTRONOMY & ASTROPHYSICS, 2019, 627
  • [34] Evolution of circumbinary planets around eccentric binaries: The case of Kepler-34
    Kley, Wilhelm
    Haghighipour, Nader
    ASTRONOMY & ASTROPHYSICS, 2015, 581
  • [35] Orbital evolution of planets embedded in a planetesimal disk
    Hahn, JM
    Malhotra, R
    ASTRONOMICAL JOURNAL, 1999, 117 (06): : 3041 - 3053
  • [36] Orbital evolution of the distant satellites of the giant planets
    Vashkov'yak, MA
    Teslenko, NM
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2005, 31 (02): : 140 - 146
  • [37] Orbital evolution of eccentric planets in radiative discs
    Bitsch, B.
    Kley, W.
    ASTRONOMY & ASTROPHYSICS, 2010, 523
  • [38] Orbital evolution of the distant satellites of the giant planets
    M. A. Vashkov’yak
    N. M. Teslenko
    Astronomy Letters, 2005, 31 : 140 - 146
  • [39] Formation and orbital evolution of planets in protostellar discs
    Lin, DNC
    Bryden, G
    Ida, S
    ASTROPHYSICAL DISCS: AN EC SUMMER SCHOOL, 1999, 160 : 207 - 227
  • [40] Where Are The Circumbinary Planets of Contact Binaries?
    Demircan, Osman
    Bulut, Ibrahim
    LIVING TOGETHER: PLANETS, HOST STARS, AND BINARIES, 2015, 496 : 395 - 399