Orbital evolution of circumbinary planets due to creep tides

被引:0
|
作者
Zoppetti, F. A. [1 ,2 ]
Folonier, H. [3 ]
Leiva, A. M. [1 ]
Gomes, G. O. [3 ]
机构
[1] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Astron Teor & Expt, Laprida 854,X5000BGR, Cordoba, Argentina
[3] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
planet-star interactions; planets and satellites; dynamical evolution and stability; celestial mechanics; CLOSE-IN SATELLITES; TIDAL EVOLUTION; KEPLER-47;
D O I
10.1051/0004-6361/202244318
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most confirmed circumbinary planets are located very close to their host binary where the tidal forces are expected to play an important role in their dynamics. Here we consider the orbital evolution of a circumbinary planet with arbitrary viscosity, subjected to tides due to both central stars. We adopt the creep tide theory and assume that the planet is the only extended body in the system and that its orbital evolution occurs after acquiring its pseudo-synchronous stationary rotational state. With this aim, we first performed a set of numerical integrations of the tidal equations, using a Kepler-38-type system as a working example. For this case we find that the amount of planetary tidal migration and also, curiously, its direction both depend on the viscosity. However, the effect of tides on its eccentricity and pericenter evolutions is simply a move toward pure gravitational secular solutions. Then we present a secular analytical model for the planetary semimajor axis and eccentricity evolution that reproduces very well the mean behavior of the full tidal equations and provides a simple criterion to determine the migration directions of the circumbinary planets. This criterion predicts that some of the confirmed circumbinary planets are tidally migrating inward, but others are migrating outward. However, the typical timescales are predicted to be very long, and not much orbital tidal evolution is expected to have taken place in these systems. Finally, we revisit the orbital evolution of a circumbinary planet in the framework of the constant time lag model. We find that the results predicted with this formalism are identical to those obtained with creep theory in the limit of gaseous bodies.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On the evolution of multiple low mass planets embedded in a circumbinary disc
    Pierens, A.
    Nelson, R. P.
    ASTRONOMY & ASTROPHYSICS, 2008, 478 (03) : 939 - 949
  • [22] ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES
    Nagasawa, M.
    Ida, S.
    ASTROPHYSICAL JOURNAL, 2011, 742 (02):
  • [23] Habitability Properties of Circumbinary Planets
    Shevchenko, Ivan I.
    ASTRONOMICAL JOURNAL, 2017, 153 (06):
  • [24] Reflected eclipses on circumbinary planets
    Deeg, H. J.
    Doyle, L. R.
    DETECTION AND DYNAMICS OF TRANSITING EXOPLANETS, 2011, 11
  • [25] The formation of planets in circumbinary discs
    Pelupessy, F. I.
    Portegies Zwart, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (01) : 895 - 902
  • [26] Circumbinary Planets and the SOLARIS Project
    Konacki, Maciej
    Sybilski, Piotr
    Kozlowski, Stanislaw K.
    Ratajczak, Milena
    Helminiak, Krzysztof G.
    FROM INTERACTING BINARIES TO EXOPLANETS: ESSENTIAL MODELING TOOLS, 2012, (282): : 111 - 116
  • [27] Parking planets in circumbinary discs
    Penzlin, Anna B. T.
    Kley, Wilhelm
    Nelson, Richard P.
    ASTRONOMY & ASTROPHYSICS, 2021, 645
  • [28] Inclination instability of circumbinary planets
    Lubow, Stephen H.
    Childs, Anna C.
    Martin, Rebecca G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 530 (03) : 2852 - 2865
  • [29] Circumbinary planets - the next steps
    Martin, D., V
    CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO, 2020, 50 (02): : 463 - 471
  • [30] Orbital evolution and migration of giant planets: Modeling extrasolar planets
    Trilling, DE
    Benz, W
    Guillot, T
    Lunine, JI
    Hubbard, WB
    Burrows, A
    ASTROPHYSICAL JOURNAL, 1998, 500 (01): : 428 - 439