Grain-scale supercharging and breakdown on airless regoliths

被引:47
|
作者
Zimmerman, M. I. [1 ]
Farrell, W. M. [2 ]
Hartzell, C. M. [3 ]
Wang, X. [4 ]
Horanyi, M. [4 ]
Hurley, D. M. [1 ]
Hibbitts, K. [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] NASA Goddard Space Flight Ctr, Greenbelt, MD USA
[3] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA
[4] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA
关键词
supercharging; regolith; airless; Moon; asteroid; solar wind; TERMINATOR REGION; SIMULANT SURFACE; LUNAR SUNSET; PLASMA WAKE; DUST; SIMULATIONS; LEVITATION; ASTEROIDS; COHESION; MOON;
D O I
10.1002/2016JE005049
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.
引用
收藏
页码:2150 / 2165
页数:16
相关论文
共 50 条
  • [1] Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown
    Molaro, Jamie L.
    Byrne, Shane
    Langer, Stephen A.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2015, 120 (02) : 255 - 277
  • [2] Grain-scale computations of barchan dunes
    Lima, Nicolao C.
    Assis, Willian R.
    Alvarez, Carlos A.
    Franklin, Erick M.
    PHYSICS OF FLUIDS, 2022, 34 (12)
  • [3] Grain-scale characterization of transformation textures
    Godet, S
    Glez, JC
    He, Y
    Jonas, JJ
    Jacques, PJ
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 : 417 - 425
  • [4] THERMAL EFFECTS OF INSOLATION PROPAGATION INTO THE REGOLITHS OF AIRLESS BODIES
    BROWN, RH
    MATSON, DL
    ICARUS, 1987, 72 (01) : 84 - 94
  • [5] A grain-scale study of spall in brittle materials
    Foulk, James W.
    Vogler, Tracy J.
    INTERNATIONAL JOURNAL OF FRACTURE, 2010, 163 (1-2) : 225 - 242
  • [6] Grain-scale permeabilities of faceted polycrystalline aggregates
    Price, J. D.
    Wark, D. A.
    Watson, E. B.
    Smith, A. M.
    GEOFLUIDS, 2006, 6 (04) : 302 - 318
  • [7] A grain-scale study of spall in brittle materials
    James W. Foulk
    Tracy J. Vogler
    International Journal of Fracture, 2010, 163 : 225 - 242
  • [9] The grain-scale signature of isotopic diffusion in ice
    Ng, Felix S. L.
    CRYOSPHERE, 2024, 18 (10): : 4645 - 4669
  • [10] Viscous relaxation of grain-scale pressure variations
    Dabrowski, M.
    Powell, R.
    Podladchikov, Y.
    JOURNAL OF METAMORPHIC GEOLOGY, 2015, 33 (08) : 859 - 868