On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity

被引:16
|
作者
Spiteri, Raymond J. [1 ]
Dean, Ryan C. [1 ]
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
efficient numerical methods; implicit-explicit Runge-Kutta (IMEX-RK) methods; ordinary differential equations (ODEs); Rush-Larsen method; simulation of electrophysiological models; splitting methods;
D O I
10.1109/TBME.2007.914677
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mathematicalmodels of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) that describe the ionic currents at the myocardial cell level. Generating an efficient numerical solution of these ODEs is a challenging task, and, in fact, the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this paper, we examine the efficiency of the numerical solution of four cardiac electrophysiological models using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform the methods commonly used in practice.
引用
收藏
页码:1488 / 1495
页数:8
相关论文
共 50 条
  • [1] Extrapolated Implicit-Explicit Runge-Kutta Methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) : 18 - 43
  • [2] Implicit-explicit Runge-Kutta methods for financial derivatives pricing models
    de Frutos, J
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 171 (03) : 991 - 1004
  • [3] Highly stable implicit-explicit Runge-Kutta methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 113 : 71 - 92
  • [4] Parallelization of Implicit-Explicit Runge-Kutta methods for cluster of PCs
    Mantas, JM
    González, P
    Carrillo, JA
    [J]. EURO-PAR 2005 PARALLEL PROCESSING, PROCEEDINGS, 2005, 3648 : 815 - 825
  • [6] Implicit-explicit Runge-Kutta methods for stiff combustion problems
    Lindblad, E.
    Valiev, D. M.
    Muller, B.
    Rantakokko, J.
    Lotstedt, P.
    Liberman, M. A.
    [J]. SHOCK WAVES, VOL 1, PROCEEDINGS, 2009, : 299 - +
  • [7] Numerical analyses of Runge-Kutta implicit-explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models
    Lock, S. -J.
    Wood, N.
    Weller, H.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (682) : 1654 - 1669
  • [8] Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
    Gardner, David J.
    Guerra, Jorge E.
    Hamon, Francois P.
    Reynolds, Daniel R.
    Ullrich, Paul A.
    Woodward, Carol S.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) : 1497 - 1515
  • [9] Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows
    Knoth, O
    Wolke, R
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 327 - 341
  • [10] A CLASS OF IMPLICIT-EXPLICIT TWO-STEP RUNGE-KUTTA METHODS
    Zharovsky, Evgeniy
    Sandu, Adrian
    Zhang, Hong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 321 - 341