Oscillating solutions for nonlinear equations involving the Pucci's extremal operators

被引:0
|
作者
d'Avenia, Pietro [1 ]
Pomponio, Alessio [1 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
关键词
Pucci's extremal operators; Fully nonlinear operator equations; Oscillating solutions; POSITIVE RADIAL SOLUTIONS; CRITICAL EXPONENTS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.nonrwa.2020.103118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the following nonlinear equations M-lambda,Lambda(+/- )(D(2)u) + g(u) = 0 inR(N), where M-lambda,Lambda(+/-) are the Pucci's extremal operators, for N >= 1 and under the A assumption g'(0) > 0. We show the existence of oscillating solutions, namely with an unbounded sequence of zeros. Moreover these solutions are periodic, if N = 1, while they are radial symmetric and decay to zero at infinity with their derivatives, if N >= 2. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条