Time evolution of electric fields and currents and the generalized Ohm's law

被引:24
|
作者
Vasyliunas, VM [1 ]
机构
[1] Max Planck Inst Sonnensystemforsch, D-37191 Katlenburg Duhm, Germany
关键词
magnetospheric physics; magnetospheric configuration and dynamics; storms and substorms; space plasma physics; kinetic and MHD theory;
D O I
10.5194/angeo-23-1347-2005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fundamentally, the time derivative of the electric field is given by the displacement-current term in Maxwell's generalization of Ampere's law, and the time derivative of the electric current density is given by the generalized Ohm's law. The latter is derived by summing the accelerations of all the plasma particles and can be written exactly, with no approximations, in a (relatively simple) primitive form containing no other time derivatives. When one is dealing with time scales long compared to the inverse of the electron plasma frequency and spatial scales large compared to the electron inertial length, however, the time derivative of the current density becomes negligible in comparison to the other terms in the generalized Ohm's law, which then becomes the equation that determines the electric field itself. Thus, on all scales larger than those of electron plasma oscillations, neither the time evolution of J nor that of E can be calculated directly. Instead, J is determined by B through Ampere's law and E by plasma dynamics through the generalized Ohm's law. The displacement current may still be non-negligible if the Alfven speed is comparable to or larger than the speed of light, but it no longer determines the time evolution of E, acting instead to modify J. For theories of substorms, this implies that, on time scales appropriate to substorm expansion, there is no equation from which the time evolution of the current could be calculated, independently of del x B. Statements about change (disruption, diversion, wedge formation, etc.) of the electric current are merely descriptions of change in the magnetic field and are not explanations.
引用
收藏
页码:1347 / 1354
页数:8
相关论文
共 50 条
  • [1] The Current Tension Electric Field in the Generalized Ohm's Law
    Luo, Lei
    Xu, Xiaojun
    Song, Liangjin
    Zhou, Meng
    Zhou, Zilu
    Man, Hengyan
    Wang, Xing
    Zhang, Yu
    He, Peishan
    Yi, Siqi
    Li, Hui
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (04)
  • [2] Studies of the generalized Ohm's law
    LevyNathansohn, R
    Bergman, DJ
    PHYSICA A, 1997, 241 (1-2): : 166 - 172
  • [3] Studies of the generalized Ohm's law
    Tel Aviv Univ, Tel Aviv, Israel
    Physica A: Statistical Mechanics and its Applications, 1997, 241 (1-2): : 166 - 172
  • [4] Generalized Ohm's law for relativistic plasmas
    Kandus, A.
    Tsagas, C. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 385 (02) : 883 - 892
  • [5] Decoupling and testing of the generalized Ohm's law
    LevyNathansohn, R
    Bergman, DJ
    PHYSICAL REVIEW B, 1997, 55 (08) : 5425 - 5439
  • [6] Violation of Ohm's law caused by alternating currents in electric circuits, containing capacity and resistance
    Franke, O
    Kudiger, O
    ZEITSCHRIFT FUR ELEKTROCHEMIE UND ANGEWANDTE PHYSIKALISCHE CHEMIE, 1929, 35 : 914 - 919
  • [7] The generalized Ohm's law in collisionless magnetic reconnection
    Cai, HJ
    Lee, LC
    PHYSICS OF PLASMAS, 1997, 4 (03) : 509 - 520
  • [8] OHM'S LAW FOR MEAN MAGNETIC FIELDS.
    Boozer, A.H.
    Journal of Plasma Physics, 1986, 35 (pt 1) : 133 - 139
  • [9] Magnetic reconnection solutions based on a generalized Ohm's law
    Craig, IJD
    Watson, PG
    SOLAR PHYSICS, 2003, 214 (01) : 131 - 150
  • [10] Magnetospheric Multiscale measurements of turbulent electric fields in earth's magnetosheath: How do plasma conditions influence the balance of terms in generalized Ohm's law?
    Lewis, Harry C.
    Stawarz, Julia E.
    Franci, Luca
    Matteini, Lorenzo
    Klein, Kristopher
    Salem, Chadi S.
    Burch, James L.
    Ergun, Robert E.
    Giles, Barbara L.
    Russell, Christopher T.
    Lindqvist, Per-Arne
    PHYSICS OF PLASMAS, 2023, 30 (08)