Label Efficient Localization of Fetal Brain Biometry Planes in Ultrasound Through Metric Learning

被引:7
|
作者
Gao, Yuan [1 ]
Beriwal, Sridevi [2 ]
Craik, Rachel [2 ,3 ]
Papageorghiou, Aris T. [2 ]
Noble, J. Alison [1 ]
机构
[1] Univ Oxford, Inst Biomed Engn, Oxford, England
[2] Univ Oxford, Nuffield Dept Womens & Reprod Hlth, Oxford, England
[3] Kings Coll London, London, England
基金
英国工程与自然科学研究理事会;
关键词
Few-shot learning; Portable ultrasound; MobileNet;
D O I
10.1007/978-3-030-60334-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many emerging medical image analysis problems, there is limited data and associated annotations. Traditional deep learning is not well-designed for this scenario. In addition, for deploying deep models on a consumer-grade tablet, it requires models to be efficient computationally. In this paper, we describe a framework for automatic quality assessment of freehand fetal ultrasound video that has been designed and built subject to constraints such as those encountered in low-income settings: ultrasound data acquired by minimally trained users, using a low-cost ultrasound probe and android tablet. Here the goal is to ensure that each video contains good neurosonography biometry planes for estimating the head circumference (HC) and transcerebellar diameter (TCD). We propose a label efficient learning framework for this purpose that it turns out generalises well to unseen data. The framework is semi-supervised consisting of two major components: 1) a prototypical learning module that learns categorical embeddings implicitly to prevent the model from overfitting; and, 2) a semantic transfer module (to unlabelled data) that performs "temperature modulated" entropy minimization to encourage a low-density separation of clusters along categorical boundaries. The trained model is deployed on an Andriod tablet via TensorFlow Lite and we report on real-time inference with the deployed models in terms of model complexity and performance.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [1] Fetal Ultrasound Brain Biometry: An Integrated Deep Learning Framework
    Kowsalya, B. U.
    Sankaran, Sathiya Murthi
    Mohanram, N.
    Thittai, Arun K.
    PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024, 2024,
  • [2] AUTOMATED SCORING OF FETAL ABDOMEN ULTRASOUND SCAN-PLANES FOR BIOMETRY
    Kumar, A. M. Chandan
    Shriram, K. S.
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 862 - 865
  • [3] AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound Planes
    Bano, Sophia
    Dromey, Brian
    Vasconcelos, Francisco
    Napolitano, Raffaele
    David, Anna L.
    Peebles, Donald M.
    Stoyanov, Danail
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 : 228 - 238
  • [4] BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes
    Avisdris, Netanell
    Joskowicz, Leo
    Dromey, Brian
    David, Anna L.
    Peebles, Donald M.
    Stoyanov, Danail
    Ben Bashat, Dafna
    Bano, Sophia
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT IV, 2022, 13434 : 279 - 289
  • [5] Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning
    Plotka, Szymon
    Pustelnik, Karol
    Szenejko, Paula
    Zebrowska, Kinga
    Rzucidlo-Szymanska, Iga
    Szymecka-Samaha, Natalia
    Legowik, Tomasz
    Kosinska-Kaczynska, Katarzyna
    Korzeniowski, Przemyslaw
    Bilinski, Piotr
    Khalil, Asma
    Brawura-Biskupski-Samaha, Robert
    Isgum, Ivana
    Sanchez, Clara. I.
    Sitek, Arkadiusz
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2025, 7 (04)
  • [6] Automated 3D Ultrasound Biometry Planes Extraction for First Trimester Fetal Assessment
    Ryou, Hosuk
    Yaqub, Mohammad
    Cavallaro, Angelo
    Roseman, Fenella
    Papageorghiou, Aris
    Noble, J. Alison
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 196 - 204
  • [7] Fetal Brain Biometry: Is there an Agreement among Ultrasound, MRI and the Measurements at Birth?
    Gafner, Michal
    Fried, Shalev
    Gosher, Noa
    Jeddah, Danielle
    Sade, Eliel Kedar
    Barzilay, Eran
    Mayer, Arnaldo
    Katorza, Eldad
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 133
  • [8] Combining deep learning and intelligent biometry to extract ultrasound standard planes and assess early gestational weeks
    Pei, Yuanyuan
    Longjiang, E.
    Dai, Changping
    Han, Jin
    Wang, Haiyu
    Liang, Huiying
    EUROPEAN RADIOLOGY, 2023, 33 (12) : 9390 - 9400
  • [9] Combining deep learning and intelligent biometry to extract ultrasound standard planes and assess early gestational weeks
    Yuanyuan Pei
    Longjiang E
    Changping Dai
    Jin Han
    Haiyu Wang
    Huiying Liang
    European Radiology, 2023, 33 : 9390 - 9400
  • [10] Automatic biometry of fetal brain MRIs using deep and machine learning techniques
    She, Jiayan
    Huang, Haiying
    Ye, Zhijun
    Huang, Wei
    Sun, Yan
    Liu, Chuan
    Yang, Weilin
    Wang, Jiaxi
    Ye, Pengfei
    Zhang, Lei
    Ning, Gang
    SCIENTIFIC REPORTS, 2023, 13 (01)