The application of thermophilic DNA primase TtDnaG2 to DNA amplification

被引:0
|
作者
Zhao, De [1 ,2 ]
Chen, Xiuqiang [1 ,2 ]
Li, Kuan [3 ]
Fu, Yu V. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Savaid Med Sch, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing 100101, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
WHOLE-GENOME AMPLIFICATION; RNA PRIMER SYNTHESIS; BINDING DOMAIN; REPLICATION; INITIATION; SUPERFAMILY; POLYMERASE; CRYSTAL; PROTEIN;
D O I
10.1038/s41598-017-12241-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For DNA replication in vivo, DNA primase uses a complementary single-stranded DNA template to synthesize RNA primers ranging from 4 to 20 nucleotides in length, which are then elongated by DNA polymerase. Here, we report that, in the presence of double-stranded DNA, the thermophilic DNA primase TtDnaG2 synthesizes RNA primers of around 100 nucleotides with low initiation specificity at 70 degrees C. Analysing the structure of TtDnaG2, we identified that it adopts a compact conformation. The conserved sites in its zinc binding domain are sequestered away from its RNA polymerase domain, which might give rise to the low initiation specificity and synthesis of long RNA segments by TtDnaG2. Based on these unique features of TtDnaG2, a DNA amplification method has been developed. We utilized TtDnaG2 to synthesize RNA primers at 70 degrees C after 95 degrees C denaturation, followed by isothermal amplification with the DNA polymerase Bst3.0 or phi29. Using this method, we successfully amplified genomic DNA of a virus with 100% coverage and low copy number variation. Our data also demonstrate that this method can efficiently amplify circular DNA from a mixture of circular DNA and linear DNA, thus providing a tool to amplify low-copy-number circular DNA such as plasmids.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The application of thermophilic DNA primase TtDnaG2 to DNA amplification
    D. Zhao
    Xiuqiang Chen
    Kuan Li
    Yu V. Fu
    Scientific Reports, 7
  • [2] Evolution of thermophilic DNA polymerases for the recognition and amplification of C2′-modified DNA
    Chen, Tingjian
    Hongdilokkul, Narupat
    Liu, Zhixia
    Adhikary, Ramkrishna
    Tsuen, Shujian S.
    Romesberg, Floyd E.
    NATURE CHEMISTRY, 2016, 8 (06) : 557 - 563
  • [3] Evolution of thermophilic DNA polymerases for the recognition and amplification of C2'-modified DNA
    Chen T.
    Hongdilokkul N.
    Liu Z.
    Adhikary R.
    Tsuen S.S.
    Romesberg F.E.
    Nature Chemistry, 2016, 8 (6) : 556 - 562
  • [4] THE STRUCTURAL RELATIONSHIP OF THE HELA DNA PRIMASE OF THE CALF THYMUS DNA PRIMASE
    HOLMES, AM
    FASEB JOURNAL, 1988, 2 (05): : A1002 - A1002
  • [5] ACCURACY OF DNA PRIMASE
    ZHANG, SS
    GROSSE, F
    JOURNAL OF MOLECULAR BIOLOGY, 1990, 216 (03) : 475 - 479
  • [6] Poxvirus DNA primase
    De Silva, Frank S.
    Lewis, Whitney
    Berglund, Peter
    Koonin, Eugene V.
    Moss, Bernard
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18724 - 18729
  • [7] Eukaryotic DNA primase
    Arezi, B
    Kuchta, RD
    TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (11) : 572 - 576
  • [8] DNA ligases from thermophilic bacteria enhance PCR amplification of long DNA sequences
    Ignatov, K. B.
    Kramarov, V. M.
    BIOCHEMISTRY-MOSCOW, 2009, 74 (05) : 557 - 561
  • [9] DNA ligases from thermophilic bacteria enhance PCR amplification of long DNA sequences
    K. B. Ignatov
    V. M. Kramarov
    Biochemistry (Moscow), 2009, 74 : 557 - 561
  • [10] Remastering the specific DNA recognition by DNA primase
    Ilic, S.
    Afek, A.
    Lukatsky, D.
    Gordan, R.
    Akabayov, B.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S143 - S143